ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cats1un Unicode version

Theorem cats1un 11239
Description: Express a word with an extra symbol as the union of the word and the new value. (Contributed by Mario Carneiro, 28-Feb-2016.)
Assertion
Ref Expression
cats1un  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A ++  <" B "> )  =  ( A  u.  { <. ( `  A ) ,  B >. } ) )

Proof of Theorem cats1un
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ccatws1cl 11151 . . . . 5  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A ++  <" B "> )  e. Word  X
)
2 wrdf 11064 . . . . 5  |-  ( ( A ++  <" B "> )  e. Word  X  -> 
( A ++  <" B "> ) : ( 0..^ ( `  ( A ++  <" B "> ) ) ) --> X )
31, 2syl 14 . . . 4  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A ++  <" B "> ) : ( 0..^ ( `  ( A ++  <" B "> ) ) ) --> X )
4 ccatws1leng 11153 . . . . . . 7  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( `  ( A ++  <" B "> ) )  =  ( ( `  A )  +  1 ) )
54oveq2d 6010 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( 0..^ ( `  ( A ++  <" B "> ) ) )  =  ( 0..^ ( ( `  A )  +  1 ) ) )
6 lencl 11062 . . . . . . . . 9  |-  ( A  e. Word  X  ->  ( `  A )  e.  NN0 )
7 nn0uz 9745 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
86, 7eleqtrdi 2322 . . . . . . . 8  |-  ( A  e. Word  X  ->  ( `  A )  e.  (
ZZ>= `  0 ) )
9 fzosplitsn 10426 . . . . . . . 8  |-  ( ( `  A )  e.  (
ZZ>= `  0 )  -> 
( 0..^ ( ( `  A )  +  1 ) )  =  ( ( 0..^ ( `  A
) )  u.  {
( `  A ) } ) )
108, 9syl 14 . . . . . . 7  |-  ( A  e. Word  X  ->  (
0..^ ( ( `  A
)  +  1 ) )  =  ( ( 0..^ ( `  A
) )  u.  {
( `  A ) } ) )
1110adantr 276 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( 0..^ ( ( `  A )  +  1 ) )  =  ( ( 0..^ ( `  A
) )  u.  {
( `  A ) } ) )
125, 11eqtrd 2262 . . . . 5  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( 0..^ ( `  ( A ++  <" B "> ) ) )  =  ( ( 0..^ ( `  A ) )  u. 
{ ( `  A
) } ) )
1312feq2d 5457 . . . 4  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A ++  <" B "> ) : ( 0..^ ( `  ( A ++  <" B "> ) ) ) --> X  <->  ( A ++  <" B "> ) : ( ( 0..^ ( `  A )
)  u.  { ( `  A ) } ) --> X ) )
143, 13mpbid 147 . . 3  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A ++  <" B "> ) : ( ( 0..^ ( `  A
) )  u.  {
( `  A ) } ) --> X )
1514ffnd 5470 . 2  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A ++  <" B "> )  Fn  (
( 0..^ ( `  A
) )  u.  {
( `  A ) } ) )
16 wrdf 11064 . . . . 5  |-  ( A  e. Word  X  ->  A : ( 0..^ ( `  A ) ) --> X )
1716adantr 276 . . . 4  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  A : ( 0..^ ( `  A )
) --> X )
18 eqid 2229 . . . . . 6  |-  { <. ( `  A ) ,  B >. }  =  { <. ( `  A ) ,  B >. }
19 fsng 5801 . . . . . 6  |-  ( ( ( `  A )  e.  NN0  /\  B  e.  X )  ->  ( { <. ( `  A ) ,  B >. } : {
( `  A ) } --> { B }  <->  { <. ( `  A ) ,  B >. }  =  { <. ( `  A ) ,  B >. } ) )
2018, 19mpbiri 168 . . . . 5  |-  ( ( ( `  A )  e.  NN0  /\  B  e.  X )  ->  { <. ( `  A ) ,  B >. } : { ( `  A ) } --> { B } )
216, 20sylan 283 . . . 4  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  { <. ( `  A ) ,  B >. } : {
( `  A ) } --> { B } )
22 fzodisjsn 10368 . . . . 5  |-  ( ( 0..^ ( `  A
) )  i^i  {
( `  A ) } )  =  (/)
2322a1i 9 . . . 4  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( 0..^ ( `  A ) )  i^i 
{ ( `  A
) } )  =  (/) )
24 fun 5493 . . . 4  |-  ( ( ( A : ( 0..^ ( `  A
) ) --> X  /\  {
<. ( `  A ) ,  B >. } : {
( `  A ) } --> { B } )  /\  ( ( 0..^ ( `  A )
)  i^i  { ( `  A ) } )  =  (/) )  ->  ( A  u.  { <. ( `  A ) ,  B >. } ) : ( ( 0..^ ( `  A
) )  u.  {
( `  A ) } ) --> ( X  u.  { B } ) )
2517, 21, 23, 24syl21anc 1270 . . 3  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A  u.  { <. ( `  A ) ,  B >. } ) : ( ( 0..^ ( `  A ) )  u. 
{ ( `  A
) } ) --> ( X  u.  { B } ) )
2625ffnd 5470 . 2  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A  u.  { <. ( `  A ) ,  B >. } )  Fn  ( ( 0..^ ( `  A ) )  u. 
{ ( `  A
) } ) )
27 elun 3345 . . 3  |-  ( x  e.  ( ( 0..^ ( `  A )
)  u.  { ( `  A ) } )  <-> 
( x  e.  ( 0..^ ( `  A
) )  \/  x  e.  { ( `  A
) } ) )
28 ccats1val1g 11156 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e.  X  /\  x  e.  ( 0..^ ( `  A )
) )  ->  (
( A ++  <" B "> ) `  x
)  =  ( A `
 x ) )
29283expa 1227 . . . . 5  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( `  A
) ) )  -> 
( ( A ++  <" B "> ) `  x )  =  ( A `  x ) )
30 vex 2802 . . . . . 6  |-  x  e. 
_V
31 simpr 110 . . . . . . . 8  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( `  A
) ) )  ->  x  e.  ( 0..^ ( `  A )
) )
32 fzonel 10345 . . . . . . . 8  |-  -.  ( `  A )  e.  ( 0..^ ( `  A
) )
33 nelne2 2491 . . . . . . . 8  |-  ( ( x  e.  ( 0..^ ( `  A )
)  /\  -.  ( `  A )  e.  ( 0..^ ( `  A
) ) )  ->  x  =/=  ( `  A
) )
3431, 32, 33sylancl 413 . . . . . . 7  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( `  A
) ) )  ->  x  =/=  ( `  A
) )
3534necomd 2486 . . . . . 6  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( `  A
) ) )  -> 
( `  A )  =/=  x )
36 fvunsng 5826 . . . . . 6  |-  ( ( x  e.  _V  /\  ( `  A )  =/=  x )  ->  (
( A  u.  { <. ( `  A ) ,  B >. } ) `  x )  =  ( A `  x ) )
3730, 35, 36sylancr 414 . . . . 5  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( `  A
) ) )  -> 
( ( A  u.  {
<. ( `  A ) ,  B >. } ) `  x )  =  ( A `  x ) )
3829, 37eqtr4d 2265 . . . 4  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( 0..^ ( `  A
) ) )  -> 
( ( A ++  <" B "> ) `  x )  =  ( ( A  u.  { <. ( `  A ) ,  B >. } ) `  x ) )
396elexd 2813 . . . . . . . . 9  |-  ( A  e. Word  X  ->  ( `  A )  e.  _V )
4039adantr 276 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( `  A )  e.  _V )
41 simpr 110 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  B  e.  X )
4217fdmd 5476 . . . . . . . . . 10  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  dom  A  =  ( 0..^ ( `  A
) ) )
4342eleq2d 2299 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( `  A
)  e.  dom  A  <->  ( `  A )  e.  ( 0..^ ( `  A
) ) ) )
4432, 43mtbiri 679 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  -.  ( `  A
)  e.  dom  A
)
45 fsnunfv 5833 . . . . . . . 8  |-  ( ( ( `  A )  e.  _V  /\  B  e.  X  /\  -.  ( `  A )  e.  dom  A )  ->  ( ( A  u.  { <. ( `  A ) ,  B >. } ) `  ( `  A ) )  =  B )
4640, 41, 44, 45syl3anc 1271 . . . . . . 7  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A  u.  {
<. ( `  A ) ,  B >. } ) `  ( `  A ) )  =  B )
47 simpl 109 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  A  e. Word  X )
48 s1cl 11140 . . . . . . . . . 10  |-  ( B  e.  X  ->  <" B ">  e. Word  X )
4948adantl 277 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  <" B ">  e. Word  X )
50 s1leng 11143 . . . . . . . . . . . 12  |-  ( B  e.  X  ->  ( ` 
<" B "> )  =  1 )
51 1nn 9109 . . . . . . . . . . . 12  |-  1  e.  NN
5250, 51eqeltrdi 2320 . . . . . . . . . . 11  |-  ( B  e.  X  ->  ( ` 
<" B "> )  e.  NN )
53 lbfzo0 10369 . . . . . . . . . . 11  |-  ( 0  e.  ( 0..^ ( `  <" B "> ) )  <->  ( `  <" B "> )  e.  NN )
5452, 53sylibr 134 . . . . . . . . . 10  |-  ( B  e.  X  ->  0  e.  ( 0..^ ( `  <" B "> )
) )
5554adantl 277 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  0  e.  ( 0..^ ( `  <" B "> ) ) )
56 ccatval3 11120 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  <" B ">  e. Word  X  /\  0  e.  ( 0..^ ( `  <" B "> )
) )  ->  (
( A ++  <" B "> ) `  (
0  +  ( `  A
) ) )  =  ( <" B "> `  0 )
)
5747, 49, 55, 56syl3anc 1271 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A ++  <" B "> ) `  ( 0  +  ( `  A ) ) )  =  ( <" B "> `  0 )
)
58 s1fv 11145 . . . . . . . . 9  |-  ( B  e.  X  ->  ( <" B "> `  0 )  =  B )
5958adantl 277 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( <" B "> `  0 )  =  B )
6057, 59eqtrd 2262 . . . . . . 7  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A ++  <" B "> ) `  ( 0  +  ( `  A ) ) )  =  B )
616adantr 276 . . . . . . . . . 10  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( `  A )  e.  NN0 )
6261nn0cnd 9412 . . . . . . . . 9  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( `  A )  e.  CC )
6362addlidd 8284 . . . . . . . 8  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( 0  +  ( `  A ) )  =  ( `  A )
)
6463fveq2d 5627 . . . . . . 7  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A ++  <" B "> ) `  ( 0  +  ( `  A ) ) )  =  ( ( A ++ 
<" B "> ) `  ( `  A
) ) )
6546, 60, 643eqtr2rd 2269 . . . . . 6  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( ( A ++  <" B "> ) `  ( `  A )
)  =  ( ( A  u.  { <. ( `  A ) ,  B >. } ) `  ( `  A ) ) )
66 elsni 3684 . . . . . . . 8  |-  ( x  e.  { ( `  A
) }  ->  x  =  ( `  A )
)
6766fveq2d 5627 . . . . . . 7  |-  ( x  e.  { ( `  A
) }  ->  (
( A ++  <" B "> ) `  x
)  =  ( ( A ++  <" B "> ) `  ( `  A
) ) )
6866fveq2d 5627 . . . . . . 7  |-  ( x  e.  { ( `  A
) }  ->  (
( A  u.  { <. ( `  A ) ,  B >. } ) `  x )  =  ( ( A  u.  { <. ( `  A ) ,  B >. } ) `  ( `  A ) ) )
6967, 68eqeq12d 2244 . . . . . 6  |-  ( x  e.  { ( `  A
) }  ->  (
( ( A ++  <" B "> ) `  x )  =  ( ( A  u.  { <. ( `  A ) ,  B >. } ) `  x )  <->  ( ( A ++  <" B "> ) `  ( `  A
) )  =  ( ( A  u.  { <. ( `  A ) ,  B >. } ) `  ( `  A ) ) ) )
7065, 69syl5ibrcom 157 . . . . 5  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( x  e.  {
( `  A ) }  ->  ( ( A ++ 
<" B "> ) `  x )  =  ( ( A  u.  { <. ( `  A ) ,  B >. } ) `  x
) ) )
7170imp 124 . . . 4  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  { ( `  A ) } )  ->  (
( A ++  <" B "> ) `  x
)  =  ( ( A  u.  { <. ( `  A ) ,  B >. } ) `  x
) )
7238, 71jaodan 802 . . 3  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  ( x  e.  ( 0..^ ( `  A
) )  \/  x  e.  { ( `  A
) } ) )  ->  ( ( A ++ 
<" B "> ) `  x )  =  ( ( A  u.  { <. ( `  A ) ,  B >. } ) `  x
) )
7327, 72sylan2b 287 . 2  |-  ( ( ( A  e. Word  X  /\  B  e.  X
)  /\  x  e.  ( ( 0..^ ( `  A ) )  u. 
{ ( `  A
) } ) )  ->  ( ( A ++ 
<" B "> ) `  x )  =  ( ( A  u.  { <. ( `  A ) ,  B >. } ) `  x
) )
7415, 26, 73eqfnfvd 5728 1  |-  ( ( A  e. Word  X  /\  B  e.  X )  ->  ( A ++  <" B "> )  =  ( A  u.  { <. ( `  A ) ,  B >. } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200    =/= wne 2400   _Vcvv 2799    u. cun 3195    i^i cin 3196   (/)c0 3491   {csn 3666   <.cop 3669   dom cdm 4716   -->wf 5310   ` cfv 5314  (class class class)co 5994   0cc0 7987   1c1 7988    + caddc 7990   NNcn 9098   NN0cn0 9357   ZZ>=cuz 9710  ..^cfzo 10326  ♯chash 10984  Word cword 11058   ++ cconcat 11111   <"cs1 11134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-n0 9358  df-z 9435  df-uz 9711  df-fz 10193  df-fzo 10327  df-ihash 10985  df-word 11059  df-concat 11112  df-s1 11135
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator