ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdpfx Unicode version

Theorem swrdpfx 11225
Description: A subword of a prefix is a subword. (Contributed by Alexander van der Vekens, 6-Apr-2018.) (Revised by AV, 8-May-2020.)
Assertion
Ref Expression
swrdpfx  |-  ( ( W  e. Word  V  /\  N  e.  ( 0 ... ( `  W
) ) )  -> 
( ( K  e.  ( 0 ... N
)  /\  L  e.  ( K ... N ) )  ->  ( ( W prefix  N ) substr  <. K ,  L >. )  =  ( W substr  <. K ,  L >. ) ) )

Proof of Theorem swrdpfx
StepHypRef Expression
1 elfznn0 10298 . . . . . . 7  |-  ( N  e.  ( 0 ... ( `  W )
)  ->  N  e.  NN0 )
21anim2i 342 . . . . . 6  |-  ( ( W  e. Word  V  /\  N  e.  ( 0 ... ( `  W
) ) )  -> 
( W  e. Word  V  /\  N  e.  NN0 ) )
32adantr 276 . . . . 5  |-  ( ( ( W  e. Word  V  /\  N  e.  (
0 ... ( `  W
) ) )  /\  ( K  e.  (
0 ... N )  /\  L  e.  ( K ... N ) ) )  ->  ( W  e. Word  V  /\  N  e.  NN0 ) )
4 pfxval 11192 . . . . 5  |-  ( ( W  e. Word  V  /\  N  e.  NN0 )  -> 
( W prefix  N )  =  ( W substr  <. 0 ,  N >. ) )
53, 4syl 14 . . . 4  |-  ( ( ( W  e. Word  V  /\  N  e.  (
0 ... ( `  W
) ) )  /\  ( K  e.  (
0 ... N )  /\  L  e.  ( K ... N ) ) )  ->  ( W prefix  N
)  =  ( W substr  <. 0 ,  N >. ) )
65oveq1d 6009 . . 3  |-  ( ( ( W  e. Word  V  /\  N  e.  (
0 ... ( `  W
) ) )  /\  ( K  e.  (
0 ... N )  /\  L  e.  ( K ... N ) ) )  ->  ( ( W prefix  N ) substr  <. K ,  L >. )  =  ( ( W substr  <. 0 ,  N >. ) substr  <. K ,  L >. ) )
7 simpl 109 . . . . . 6  |-  ( ( W  e. Word  V  /\  N  e.  ( 0 ... ( `  W
) ) )  ->  W  e. Word  V )
8 simpr 110 . . . . . 6  |-  ( ( W  e. Word  V  /\  N  e.  ( 0 ... ( `  W
) ) )  ->  N  e.  ( 0 ... ( `  W
) ) )
9 0elfz 10302 . . . . . . . 8  |-  ( N  e.  NN0  ->  0  e.  ( 0 ... N
) )
101, 9syl 14 . . . . . . 7  |-  ( N  e.  ( 0 ... ( `  W )
)  ->  0  e.  ( 0 ... N
) )
1110adantl 277 . . . . . 6  |-  ( ( W  e. Word  V  /\  N  e.  ( 0 ... ( `  W
) ) )  -> 
0  e.  ( 0 ... N ) )
127, 8, 113jca 1201 . . . . 5  |-  ( ( W  e. Word  V  /\  N  e.  ( 0 ... ( `  W
) ) )  -> 
( W  e. Word  V  /\  N  e.  (
0 ... ( `  W
) )  /\  0  e.  ( 0 ... N
) ) )
1312adantr 276 . . . 4  |-  ( ( ( W  e. Word  V  /\  N  e.  (
0 ... ( `  W
) ) )  /\  ( K  e.  (
0 ... N )  /\  L  e.  ( K ... N ) ) )  ->  ( W  e. Word  V  /\  N  e.  ( 0 ... ( `  W
) )  /\  0  e.  ( 0 ... N
) ) )
14 elfzelz 10209 . . . . . . . . . 10  |-  ( N  e.  ( 0 ... ( `  W )
)  ->  N  e.  ZZ )
15 zcn 9439 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  N  e.  CC )
1615subid1d 8434 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  ( N  -  0 )  =  N )
1716eqcomd 2235 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  =  ( N  - 
0 ) )
1814, 17syl 14 . . . . . . . . 9  |-  ( N  e.  ( 0 ... ( `  W )
)  ->  N  =  ( N  -  0
) )
1918adantl 277 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  N  e.  ( 0 ... ( `  W
) ) )  ->  N  =  ( N  -  0 ) )
2019oveq2d 6010 . . . . . . 7  |-  ( ( W  e. Word  V  /\  N  e.  ( 0 ... ( `  W
) ) )  -> 
( 0 ... N
)  =  ( 0 ... ( N  - 
0 ) ) )
2120eleq2d 2299 . . . . . 6  |-  ( ( W  e. Word  V  /\  N  e.  ( 0 ... ( `  W
) ) )  -> 
( K  e.  ( 0 ... N )  <-> 
K  e.  ( 0 ... ( N  - 
0 ) ) ) )
2219oveq2d 6010 . . . . . . 7  |-  ( ( W  e. Word  V  /\  N  e.  ( 0 ... ( `  W
) ) )  -> 
( K ... N
)  =  ( K ... ( N  - 
0 ) ) )
2322eleq2d 2299 . . . . . 6  |-  ( ( W  e. Word  V  /\  N  e.  ( 0 ... ( `  W
) ) )  -> 
( L  e.  ( K ... N )  <-> 
L  e.  ( K ... ( N  - 
0 ) ) ) )
2421, 23anbi12d 473 . . . . 5  |-  ( ( W  e. Word  V  /\  N  e.  ( 0 ... ( `  W
) ) )  -> 
( ( K  e.  ( 0 ... N
)  /\  L  e.  ( K ... N ) )  <->  ( K  e.  ( 0 ... ( N  -  0 ) )  /\  L  e.  ( K ... ( N  -  0 ) ) ) ) )
2524biimpa 296 . . . 4  |-  ( ( ( W  e. Word  V  /\  N  e.  (
0 ... ( `  W
) ) )  /\  ( K  e.  (
0 ... N )  /\  L  e.  ( K ... N ) ) )  ->  ( K  e.  ( 0 ... ( N  -  0 ) )  /\  L  e.  ( K ... ( N  -  0 ) ) ) )
26 swrdswrd 11223 . . . 4  |-  ( ( W  e. Word  V  /\  N  e.  ( 0 ... ( `  W
) )  /\  0  e.  ( 0 ... N
) )  ->  (
( K  e.  ( 0 ... ( N  -  0 ) )  /\  L  e.  ( K ... ( N  -  0 ) ) )  ->  ( ( W substr  <. 0 ,  N >. ) substr  <. K ,  L >. )  =  ( W substr  <. ( 0  +  K
) ,  ( 0  +  L ) >.
) ) )
2713, 25, 26sylc 62 . . 3  |-  ( ( ( W  e. Word  V  /\  N  e.  (
0 ... ( `  W
) ) )  /\  ( K  e.  (
0 ... N )  /\  L  e.  ( K ... N ) ) )  ->  ( ( W substr  <. 0 ,  N >. ) substr  <. K ,  L >. )  =  ( W substr  <. (
0  +  K ) ,  ( 0  +  L ) >. )
)
28 elfzelz 10209 . . . . . . . . 9  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ZZ )
2928zcnd 9558 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  K  e.  CC )
3029adantr 276 . . . . . . 7  |-  ( ( K  e.  ( 0 ... N )  /\  L  e.  ( K ... N ) )  ->  K  e.  CC )
3130adantl 277 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  N  e.  (
0 ... ( `  W
) ) )  /\  ( K  e.  (
0 ... N )  /\  L  e.  ( K ... N ) ) )  ->  K  e.  CC )
3231addlidd 8284 . . . . 5  |-  ( ( ( W  e. Word  V  /\  N  e.  (
0 ... ( `  W
) ) )  /\  ( K  e.  (
0 ... N )  /\  L  e.  ( K ... N ) ) )  ->  ( 0  +  K )  =  K )
33 elfzelz 10209 . . . . . . . . 9  |-  ( L  e.  ( K ... N )  ->  L  e.  ZZ )
3433zcnd 9558 . . . . . . . 8  |-  ( L  e.  ( K ... N )  ->  L  e.  CC )
3534adantl 277 . . . . . . 7  |-  ( ( K  e.  ( 0 ... N )  /\  L  e.  ( K ... N ) )  ->  L  e.  CC )
3635adantl 277 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  N  e.  (
0 ... ( `  W
) ) )  /\  ( K  e.  (
0 ... N )  /\  L  e.  ( K ... N ) ) )  ->  L  e.  CC )
3736addlidd 8284 . . . . 5  |-  ( ( ( W  e. Word  V  /\  N  e.  (
0 ... ( `  W
) ) )  /\  ( K  e.  (
0 ... N )  /\  L  e.  ( K ... N ) ) )  ->  ( 0  +  L )  =  L )
3832, 37opeq12d 3864 . . . 4  |-  ( ( ( W  e. Word  V  /\  N  e.  (
0 ... ( `  W
) ) )  /\  ( K  e.  (
0 ... N )  /\  L  e.  ( K ... N ) ) )  ->  <. ( 0  +  K ) ,  ( 0  +  L )
>.  =  <. K ,  L >. )
3938oveq2d 6010 . . 3  |-  ( ( ( W  e. Word  V  /\  N  e.  (
0 ... ( `  W
) ) )  /\  ( K  e.  (
0 ... N )  /\  L  e.  ( K ... N ) ) )  ->  ( W substr  <. (
0  +  K ) ,  ( 0  +  L ) >. )  =  ( W substr  <. K ,  L >. ) )
406, 27, 393eqtrd 2266 . 2  |-  ( ( ( W  e. Word  V  /\  N  e.  (
0 ... ( `  W
) ) )  /\  ( K  e.  (
0 ... N )  /\  L  e.  ( K ... N ) ) )  ->  ( ( W prefix  N ) substr  <. K ,  L >. )  =  ( W substr  <. K ,  L >. ) )
4140ex 115 1  |-  ( ( W  e. Word  V  /\  N  e.  ( 0 ... ( `  W
) ) )  -> 
( ( K  e.  ( 0 ... N
)  /\  L  e.  ( K ... N ) )  ->  ( ( W prefix  N ) substr  <. K ,  L >. )  =  ( W substr  <. K ,  L >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   <.cop 3669   ` cfv 5314  (class class class)co 5994   CCcc 7985   0cc0 7987    + caddc 7990    - cmin 8305   NN0cn0 9357   ZZcz 9434   ...cfz 10192  ♯chash 10984  Word cword 11058   substr csubstr 11163   prefix cpfx 11190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-n0 9358  df-z 9435  df-uz 9711  df-fz 10193  df-fzo 10327  df-ihash 10985  df-word 11059  df-substr 11164  df-pfx 11191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator