ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnqpr1 Unicode version

Theorem addnqpr1 7517
Description: Addition of one to a fraction embedded into a positive real. One can either add the fraction one to the fraction, or the positive real one to the positive real, and get the same result. Special case of addnqpr 7516. (Contributed by Jim Kingdon, 26-Apr-2020.)
Assertion
Ref Expression
addnqpr1  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  ( A  +Q  1Q ) } ,  { u  |  ( A  +Q  1Q )  <Q  u } >.  =  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  1P ) )
Distinct variable group:    A, l, u

Proof of Theorem addnqpr1
StepHypRef Expression
1 1nq 7321 . . 3  |-  1Q  e.  Q.
2 addnqpr 7516 . . 3  |-  ( ( A  e.  Q.  /\  1Q  e.  Q. )  ->  <. { l  |  l 
<Q  ( A  +Q  1Q ) } ,  { u  |  ( A  +Q  1Q )  <Q  u } >.  =  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >. ) )
31, 2mpan2 423 . 2  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  ( A  +Q  1Q ) } ,  { u  |  ( A  +Q  1Q )  <Q  u } >.  =  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >. ) )
4 df-i1p 7422 . . 3  |-  1P  =  <. { l  |  l 
<Q  1Q } ,  {
u  |  1Q  <Q  u } >.
54oveq2i 5862 . 2  |-  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  <. { l  |  l  <Q  1Q } ,  { u  |  1Q  <Q  u } >. )
63, 5eqtr4di 2221 1  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  ( A  +Q  1Q ) } ,  { u  |  ( A  +Q  1Q )  <Q  u } >.  =  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  +P.  1P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   {cab 2156   <.cop 3584   class class class wbr 3987  (class class class)co 5851   Q.cnq 7235   1Qc1q 7236    +Q cplq 7237    <Q cltq 7240   1Pc1p 7247    +P. cpp 7248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-1o 6393  df-2o 6394  df-oadd 6397  df-omul 6398  df-er 6511  df-ec 6513  df-qs 6517  df-ni 7259  df-pli 7260  df-mi 7261  df-lti 7262  df-plpq 7299  df-mpq 7300  df-enq 7302  df-nqqs 7303  df-plqqs 7304  df-mqqs 7305  df-1nqqs 7306  df-rq 7307  df-ltnqqs 7308  df-enq0 7379  df-nq0 7380  df-0nq0 7381  df-plq0 7382  df-mq0 7383  df-inp 7421  df-i1p 7422  df-iplp 7423
This theorem is referenced by:  pitonnlem2  7802
  Copyright terms: Public domain W3C validator