ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonnlem2 Unicode version

Theorem pitonnlem2 7619
Description: Lemma for pitonn 7620. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.)
Assertion
Ref Expression
pitonnlem2  |-  ( K  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l 
<Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  {
u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
Distinct variable group:    K, l, u

Proof of Theorem pitonnlem2
StepHypRef Expression
1 df-1 7592 . . . 4  |-  1  =  <. 1R ,  0R >.
21oveq2i 5751 . . 3  |-  ( <. [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  ( <. [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  <. 1R ,  0R >. )
3 nnprlu 7325 . . . . . . . 8  |-  ( K  e.  N.  ->  <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
4 1pr 7326 . . . . . . . 8  |-  1P  e.  P.
5 addclpr 7309 . . . . . . . 8  |-  ( (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  /\  1P  e.  P. )  ->  ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
63, 4, 5sylancl 407 . . . . . . 7  |-  ( K  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
7 opelxpi 4539 . . . . . . 7  |-  ( ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  /\  1P  e.  P. )  ->  <. ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. ) )
86, 4, 7sylancl 407 . . . . . 6  |-  ( K  e.  N.  ->  <. ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. ) )
9 enrex 7509 . . . . . . 7  |-  ~R  e.  _V
109ecelqsi 6449 . . . . . 6  |-  ( <.
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
118, 10syl 14 . . . . 5  |-  ( K  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
12 df-nr 7499 . . . . 5  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
1311, 12syl6eleqr 2209 . . . 4  |-  ( K  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
14 1sr 7523 . . . 4  |-  1R  e.  R.
15 addresr 7609 . . . 4  |-  ( ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R.  /\  1R  e.  R. )  ->  ( <. [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  <. 1R ,  0R >. )  =  <. ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R ) ,  0R >. )
1613, 14, 15sylancl 407 . . 3  |-  ( K  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  <. 1R ,  0R >. )  =  <. ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R ) ,  0R >. )
172, 16syl5eq 2160 . 2  |-  ( K  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. ( [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R ) ,  0R >. )
18 pitonnlem1p1 7618 . . . . 5  |-  ( (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  ->  [ <. (
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  1P ) ,  1P >. ]  ~R  )
196, 18syl 14 . . . 4  |-  ( K  e.  N.  ->  [ <. ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  1P ) ,  1P >. ]  ~R  )
20 df-1r 7504 . . . . . 6  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
2120oveq2i 5751 . . . . 5  |-  ( [
<. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R )  =  ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
22 addclpr 7309 . . . . . . . 8  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
234, 4, 22mp2an 420 . . . . . . 7  |-  ( 1P 
+P.  1P )  e.  P.
24 addsrpr 7517 . . . . . . . 8  |-  ( ( ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  (
( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  -> 
( [ <. ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
254, 24mpanl2 429 . . . . . . 7  |-  ( ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  /\  ( ( 1P  +P.  1P )  e. 
P.  /\  1P  e.  P. ) )  ->  ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
2623, 4, 25mpanr12 433 . . . . . 6  |-  ( (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  ->  ( [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
276, 26syl 14 . . . . 5  |-  ( K  e.  N.  ->  ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
2821, 27syl5eq 2160 . . . 4  |-  ( K  e.  N.  ->  ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R )  =  [ <. ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
29 addpinq1 7236 . . . . . . . . . . 11  |-  ( K  e.  N.  ->  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  =  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) )
3029breq2d 3909 . . . . . . . . . 10  |-  ( K  e.  N.  ->  (
l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <->  l  <Q  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) ) )
3130abbidv 2233 . . . . . . . . 9  |-  ( K  e.  N.  ->  { l  |  l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) } )
3229breq1d 3907 . . . . . . . . . 10  |-  ( K  e.  N.  ->  ( [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u  <->  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) 
<Q  u ) )
3332abbidv 2233 . . . . . . . . 9  |-  ( K  e.  N.  ->  { u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u }  =  { u  |  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q )  <Q  u } )
3431, 33opeq12d 3681 . . . . . . . 8  |-  ( K  e.  N.  ->  <. { l  |  l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) } ,  { u  |  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q )  <Q  u } >. )
35 nnnq 7194 . . . . . . . . 9  |-  ( K  e.  N.  ->  [ <. K ,  1o >. ]  ~Q  e.  Q. )
36 addnqpr1 7334 . . . . . . . . 9  |-  ( [
<. K ,  1o >. ]  ~Q  e.  Q.  ->  <. { l  |  l 
<Q  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) } ,  {
u  |  ( [
<. K ,  1o >. ]  ~Q  +Q  1Q ) 
<Q  u } >.  =  (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
3735, 36syl 14 . . . . . . . 8  |-  ( K  e.  N.  ->  <. { l  |  l  <Q  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) } ,  { u  |  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
3834, 37eqtrd 2148 . . . . . . 7  |-  ( K  e.  N.  ->  <. { l  |  l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  =  ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
)
3938oveq1d 5755 . . . . . 6  |-  ( K  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  {
u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P. 
1P ) )
4039opeq1d 3679 . . . . 5  |-  ( K  e.  N.  ->  <. ( <. { l  |  l 
<Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  {
u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P. 
1P ) ,  1P >. )
4140eceq1d 6431 . . . 4  |-  ( K  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  {
u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P. 
1P ) ,  1P >. ]  ~R  )
4219, 28, 413eqtr4d 2158 . . 3  |-  ( K  e.  N.  ->  ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R )  =  [ <. ( <. { l  |  l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
4342opeq1d 3679 . 2  |-  ( K  e.  N.  ->  <. ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R ) ,  0R >.  = 
<. [ <. ( <. { l  |  l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
4417, 43eqtrd 2148 1  |-  ( K  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l 
<Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  {
u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314    e. wcel 1463   {cab 2101   <.cop 3498   class class class wbr 3897    X. cxp 4505  (class class class)co 5740   1oc1o 6272   [cec 6393   /.cqs 6394   N.cnpi 7044    +N cpli 7045    ~Q ceq 7051   Q.cnq 7052   1Qc1q 7053    +Q cplq 7054    <Q cltq 7057   P.cnp 7063   1Pc1p 7064    +P. cpp 7065    ~R cer 7068   R.cnr 7069   0Rc0r 7070   1Rc1r 7071    +R cplr 7073   1c1 7585    + caddc 7587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-eprel 4179  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-1o 6279  df-2o 6280  df-oadd 6283  df-omul 6284  df-er 6395  df-ec 6397  df-qs 6401  df-ni 7076  df-pli 7077  df-mi 7078  df-lti 7079  df-plpq 7116  df-mpq 7117  df-enq 7119  df-nqqs 7120  df-plqqs 7121  df-mqqs 7122  df-1nqqs 7123  df-rq 7124  df-ltnqqs 7125  df-enq0 7196  df-nq0 7197  df-0nq0 7198  df-plq0 7199  df-mq0 7200  df-inp 7238  df-i1p 7239  df-iplp 7240  df-enr 7498  df-nr 7499  df-plr 7500  df-0r 7503  df-1r 7504  df-c 7590  df-1 7592  df-add 7595
This theorem is referenced by:  pitonn  7620  nntopi  7666
  Copyright terms: Public domain W3C validator