| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pitonnlem2 | Unicode version | ||
| Description: Lemma for pitonn 7915. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.) |
| Ref | Expression |
|---|---|
| pitonnlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1 7887 |
. . . 4
| |
| 2 | 1 | oveq2i 5933 |
. . 3
|
| 3 | nnprlu 7620 |
. . . . . . . 8
| |
| 4 | 1pr 7621 |
. . . . . . . 8
| |
| 5 | addclpr 7604 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | sylancl 413 |
. . . . . . 7
|
| 7 | opelxpi 4695 |
. . . . . . 7
| |
| 8 | 6, 4, 7 | sylancl 413 |
. . . . . 6
|
| 9 | enrex 7804 |
. . . . . . 7
| |
| 10 | 9 | ecelqsi 6648 |
. . . . . 6
|
| 11 | 8, 10 | syl 14 |
. . . . 5
|
| 12 | df-nr 7794 |
. . . . 5
| |
| 13 | 11, 12 | eleqtrrdi 2290 |
. . . 4
|
| 14 | 1sr 7818 |
. . . 4
| |
| 15 | addresr 7904 |
. . . 4
| |
| 16 | 13, 14, 15 | sylancl 413 |
. . 3
|
| 17 | 2, 16 | eqtrid 2241 |
. 2
|
| 18 | pitonnlem1p1 7913 |
. . . . 5
| |
| 19 | 6, 18 | syl 14 |
. . . 4
|
| 20 | df-1r 7799 |
. . . . . 6
| |
| 21 | 20 | oveq2i 5933 |
. . . . 5
|
| 22 | addclpr 7604 |
. . . . . . . 8
| |
| 23 | 4, 4, 22 | mp2an 426 |
. . . . . . 7
|
| 24 | addsrpr 7812 |
. . . . . . . 8
| |
| 25 | 4, 24 | mpanl2 435 |
. . . . . . 7
|
| 26 | 23, 4, 25 | mpanr12 439 |
. . . . . 6
|
| 27 | 6, 26 | syl 14 |
. . . . 5
|
| 28 | 21, 27 | eqtrid 2241 |
. . . 4
|
| 29 | addpinq1 7531 |
. . . . . . . . . . 11
| |
| 30 | 29 | breq2d 4045 |
. . . . . . . . . 10
|
| 31 | 30 | abbidv 2314 |
. . . . . . . . 9
|
| 32 | 29 | breq1d 4043 |
. . . . . . . . . 10
|
| 33 | 32 | abbidv 2314 |
. . . . . . . . 9
|
| 34 | 31, 33 | opeq12d 3816 |
. . . . . . . 8
|
| 35 | nnnq 7489 |
. . . . . . . . 9
| |
| 36 | addnqpr1 7629 |
. . . . . . . . 9
| |
| 37 | 35, 36 | syl 14 |
. . . . . . . 8
|
| 38 | 34, 37 | eqtrd 2229 |
. . . . . . 7
|
| 39 | 38 | oveq1d 5937 |
. . . . . 6
|
| 40 | 39 | opeq1d 3814 |
. . . . 5
|
| 41 | 40 | eceq1d 6628 |
. . . 4
|
| 42 | 19, 28, 41 | 3eqtr4d 2239 |
. . 3
|
| 43 | 42 | opeq1d 3814 |
. 2
|
| 44 | 17, 43 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-i1p 7534 df-iplp 7535 df-enr 7793 df-nr 7794 df-plr 7795 df-0r 7798 df-1r 7799 df-c 7885 df-1 7887 df-add 7890 |
| This theorem is referenced by: pitonn 7915 nntopi 7961 |
| Copyright terms: Public domain | W3C validator |