ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pitonnlem2 Unicode version

Theorem pitonnlem2 7995
Description: Lemma for pitonn 7996. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.)
Assertion
Ref Expression
pitonnlem2  |-  ( K  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l 
<Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  {
u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
Distinct variable group:    K, l, u

Proof of Theorem pitonnlem2
StepHypRef Expression
1 df-1 7968 . . . 4  |-  1  =  <. 1R ,  0R >.
21oveq2i 5978 . . 3  |-  ( <. [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  ( <. [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  <. 1R ,  0R >. )
3 nnprlu 7701 . . . . . . . 8  |-  ( K  e.  N.  ->  <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
4 1pr 7702 . . . . . . . 8  |-  1P  e.  P.
5 addclpr 7685 . . . . . . . 8  |-  ( (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  /\  1P  e.  P. )  ->  ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
63, 4, 5sylancl 413 . . . . . . 7  |-  ( K  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P. )
7 opelxpi 4725 . . . . . . 7  |-  ( ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  /\  1P  e.  P. )  ->  <. ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. ) )
86, 4, 7sylancl 413 . . . . . 6  |-  ( K  e.  N.  ->  <. ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. ) )
9 enrex 7885 . . . . . . 7  |-  ~R  e.  _V
109ecelqsi 6699 . . . . . 6  |-  ( <.
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
118, 10syl 14 . . . . 5  |-  ( K  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
12 df-nr 7875 . . . . 5  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
1311, 12eleqtrrdi 2301 . . . 4  |-  ( K  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
14 1sr 7899 . . . 4  |-  1R  e.  R.
15 addresr 7985 . . . 4  |-  ( ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R.  /\  1R  e.  R. )  ->  ( <. [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  <. 1R ,  0R >. )  =  <. ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R ) ,  0R >. )
1613, 14, 15sylancl 413 . . 3  |-  ( K  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  <. 1R ,  0R >. )  =  <. ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R ) ,  0R >. )
172, 16eqtrid 2252 . 2  |-  ( K  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. ( [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R ) ,  0R >. )
18 pitonnlem1p1 7994 . . . . 5  |-  ( (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  ->  [ <. (
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  1P ) ,  1P >. ]  ~R  )
196, 18syl 14 . . . 4  |-  ( K  e.  N.  ->  [ <. ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  =  [ <. ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  1P ) ,  1P >. ]  ~R  )
20 df-1r 7880 . . . . . 6  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
2120oveq2i 5978 . . . . 5  |-  ( [
<. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R )  =  ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
22 addclpr 7685 . . . . . . . 8  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
234, 4, 22mp2an 426 . . . . . . 7  |-  ( 1P 
+P.  1P )  e.  P.
24 addsrpr 7893 . . . . . . . 8  |-  ( ( ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e.  P.  /\  1P  e.  P. )  /\  (
( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  -> 
( [ <. ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
254, 24mpanl2 435 . . . . . . 7  |-  ( ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  /\  ( ( 1P  +P.  1P )  e. 
P.  /\  1P  e.  P. ) )  ->  ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
2623, 4, 25mpanr12 439 . . . . . 6  |-  ( (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  e. 
P.  ->  ( [ <. (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
276, 26syl 14 . . . . 5  |-  ( K  e.  N.  ->  ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. (
( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
2821, 27eqtrid 2252 . . . 4  |-  ( K  e.  N.  ->  ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R )  =  [ <. ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P.  ( 1P  +P.  1P ) ) ,  ( 1P  +P.  1P )
>. ]  ~R  )
29 addpinq1 7612 . . . . . . . . . . 11  |-  ( K  e.  N.  ->  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  =  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) )
3029breq2d 4071 . . . . . . . . . 10  |-  ( K  e.  N.  ->  (
l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <->  l  <Q  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) ) )
3130abbidv 2325 . . . . . . . . 9  |-  ( K  e.  N.  ->  { l  |  l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) } )
3229breq1d 4069 . . . . . . . . . 10  |-  ( K  e.  N.  ->  ( [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u  <->  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) 
<Q  u ) )
3332abbidv 2325 . . . . . . . . 9  |-  ( K  e.  N.  ->  { u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u }  =  { u  |  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q )  <Q  u } )
3431, 33opeq12d 3841 . . . . . . . 8  |-  ( K  e.  N.  ->  <. { l  |  l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) } ,  { u  |  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q )  <Q  u } >. )
35 nnnq 7570 . . . . . . . . 9  |-  ( K  e.  N.  ->  [ <. K ,  1o >. ]  ~Q  e.  Q. )
36 addnqpr1 7710 . . . . . . . . 9  |-  ( [
<. K ,  1o >. ]  ~Q  e.  Q.  ->  <. { l  |  l 
<Q  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) } ,  {
u  |  ( [
<. K ,  1o >. ]  ~Q  +Q  1Q ) 
<Q  u } >.  =  (
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
3735, 36syl 14 . . . . . . . 8  |-  ( K  e.  N.  ->  <. { l  |  l  <Q  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q ) } ,  { u  |  ( [ <. K ,  1o >. ]  ~Q  +Q  1Q )  <Q  u } >.  =  ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
3834, 37eqtrd 2240 . . . . . . 7  |-  ( K  e.  N.  ->  <. { l  |  l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  =  ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )
)
3938oveq1d 5982 . . . . . 6  |-  ( K  e.  N.  ->  ( <. { l  |  l 
<Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  {
u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P. 
1P ) )
4039opeq1d 3839 . . . . 5  |-  ( K  e.  N.  ->  <. ( <. { l  |  l 
<Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  {
u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. ( ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P. 
1P ) ,  1P >. )
4140eceq1d 6679 . . . 4  |-  ( K  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  {
u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  +P. 
1P ) ,  1P >. ]  ~R  )
4219, 28, 413eqtr4d 2250 . . 3  |-  ( K  e.  N.  ->  ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R )  =  [ <. ( <. { l  |  l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
4342opeq1d 3839 . 2  |-  ( K  e.  N.  ->  <. ( [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  +R  1R ) ,  0R >.  = 
<. [ <. ( <. { l  |  l  <Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  { u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
4417, 43eqtrd 2240 1  |-  ( K  e.  N.  ->  ( <. [ <. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  +  1 )  =  <. [ <. ( <. { l  |  l 
<Q  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  } ,  {
u  |  [ <. ( K  +N  1o ) ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   {cab 2193   <.cop 3646   class class class wbr 4059    X. cxp 4691  (class class class)co 5967   1oc1o 6518   [cec 6641   /.cqs 6642   N.cnpi 7420    +N cpli 7421    ~Q ceq 7427   Q.cnq 7428   1Qc1q 7429    +Q cplq 7430    <Q cltq 7433   P.cnp 7439   1Pc1p 7440    +P. cpp 7441    ~R cer 7444   R.cnr 7445   0Rc0r 7446   1Rc1r 7447    +R cplr 7449   1c1 7961    + caddc 7963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-i1p 7615  df-iplp 7616  df-enr 7874  df-nr 7875  df-plr 7876  df-0r 7879  df-1r 7880  df-c 7966  df-1 7968  df-add 7971
This theorem is referenced by:  pitonn  7996  nntopi  8042
  Copyright terms: Public domain W3C validator