| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pitonnlem2 | Unicode version | ||
| Description: Lemma for pitonn 7996. Two ways to add one to a number. (Contributed by Jim Kingdon, 24-Apr-2020.) |
| Ref | Expression |
|---|---|
| pitonnlem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1 7968 |
. . . 4
| |
| 2 | 1 | oveq2i 5978 |
. . 3
|
| 3 | nnprlu 7701 |
. . . . . . . 8
| |
| 4 | 1pr 7702 |
. . . . . . . 8
| |
| 5 | addclpr 7685 |
. . . . . . . 8
| |
| 6 | 3, 4, 5 | sylancl 413 |
. . . . . . 7
|
| 7 | opelxpi 4725 |
. . . . . . 7
| |
| 8 | 6, 4, 7 | sylancl 413 |
. . . . . 6
|
| 9 | enrex 7885 |
. . . . . . 7
| |
| 10 | 9 | ecelqsi 6699 |
. . . . . 6
|
| 11 | 8, 10 | syl 14 |
. . . . 5
|
| 12 | df-nr 7875 |
. . . . 5
| |
| 13 | 11, 12 | eleqtrrdi 2301 |
. . . 4
|
| 14 | 1sr 7899 |
. . . 4
| |
| 15 | addresr 7985 |
. . . 4
| |
| 16 | 13, 14, 15 | sylancl 413 |
. . 3
|
| 17 | 2, 16 | eqtrid 2252 |
. 2
|
| 18 | pitonnlem1p1 7994 |
. . . . 5
| |
| 19 | 6, 18 | syl 14 |
. . . 4
|
| 20 | df-1r 7880 |
. . . . . 6
| |
| 21 | 20 | oveq2i 5978 |
. . . . 5
|
| 22 | addclpr 7685 |
. . . . . . . 8
| |
| 23 | 4, 4, 22 | mp2an 426 |
. . . . . . 7
|
| 24 | addsrpr 7893 |
. . . . . . . 8
| |
| 25 | 4, 24 | mpanl2 435 |
. . . . . . 7
|
| 26 | 23, 4, 25 | mpanr12 439 |
. . . . . 6
|
| 27 | 6, 26 | syl 14 |
. . . . 5
|
| 28 | 21, 27 | eqtrid 2252 |
. . . 4
|
| 29 | addpinq1 7612 |
. . . . . . . . . . 11
| |
| 30 | 29 | breq2d 4071 |
. . . . . . . . . 10
|
| 31 | 30 | abbidv 2325 |
. . . . . . . . 9
|
| 32 | 29 | breq1d 4069 |
. . . . . . . . . 10
|
| 33 | 32 | abbidv 2325 |
. . . . . . . . 9
|
| 34 | 31, 33 | opeq12d 3841 |
. . . . . . . 8
|
| 35 | nnnq 7570 |
. . . . . . . . 9
| |
| 36 | addnqpr1 7710 |
. . . . . . . . 9
| |
| 37 | 35, 36 | syl 14 |
. . . . . . . 8
|
| 38 | 34, 37 | eqtrd 2240 |
. . . . . . 7
|
| 39 | 38 | oveq1d 5982 |
. . . . . 6
|
| 40 | 39 | opeq1d 3839 |
. . . . 5
|
| 41 | 40 | eceq1d 6679 |
. . . 4
|
| 42 | 19, 28, 41 | 3eqtr4d 2250 |
. . 3
|
| 43 | 42 | opeq1d 3839 |
. 2
|
| 44 | 17, 43 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-i1p 7615 df-iplp 7616 df-enr 7874 df-nr 7875 df-plr 7876 df-0r 7879 df-1r 7880 df-c 7966 df-1 7968 df-add 7971 |
| This theorem is referenced by: pitonn 7996 nntopi 8042 |
| Copyright terms: Public domain | W3C validator |