ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  btwnzge0 Unicode version

Theorem btwnzge0 10087
Description: A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of [Gleason] p. 217. (Contributed by NM, 12-Mar-2005.)
Assertion
Ref Expression
btwnzge0  |-  ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  ->  (
0  <_  A  <->  0  <_  N ) )

Proof of Theorem btwnzge0
StepHypRef Expression
1 0red 7781 . . . 4  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  -> 
0  e.  RR )
2 simplll 522 . . . 4  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  ->  A  e.  RR )
3 simplr 519 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  ->  N  e.  ZZ )
43zred 9187 . . . . . 6  |-  ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  ->  N  e.  RR )
54adantr 274 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  ->  N  e.  RR )
6 1red 7795 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  -> 
1  e.  RR )
75, 6readdcld 7809 . . . 4  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  -> 
( N  +  1 )  e.  RR )
8 simpr 109 . . . 4  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  -> 
0  <_  A )
9 simplrr 525 . . . 4  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  ->  A  <  ( N  + 
1 ) )
101, 2, 7, 8, 9lelttrd 7901 . . 3  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  -> 
0  <  ( N  +  1 ) )
11 0z 9079 . . . . 5  |-  0  e.  ZZ
12 zleltp1 9123 . . . . 5  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  <_  N  <->  0  <  ( N  + 
1 ) ) )
1311, 12mpan 420 . . . 4  |-  ( N  e.  ZZ  ->  (
0  <_  N  <->  0  <  ( N  +  1 ) ) )
1413ad3antlr 484 . . 3  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  -> 
( 0  <_  N  <->  0  <  ( N  + 
1 ) ) )
1510, 14mpbird 166 . 2  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  -> 
0  <_  N )
16 0red 7781 . . 3  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  N )  -> 
0  e.  RR )
174adantr 274 . . 3  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  N )  ->  N  e.  RR )
18 simplll 522 . . 3  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  N )  ->  A  e.  RR )
19 simpr 109 . . 3  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  N )  -> 
0  <_  N )
20 simplrl 524 . . 3  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  N )  ->  N  <_  A )
2116, 17, 18, 19, 20letrd 7900 . 2  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  N )  -> 
0  <_  A )
2215, 21impbida 585 1  |-  ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  ->  (
0  <_  A  <->  0  <_  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   RRcr 7633   0cc0 7634   1c1 7635    + caddc 7637    < clt 7814    <_ cle 7815   ZZcz 9068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7725  ax-resscn 7726  ax-1cn 7727  ax-1re 7728  ax-icn 7729  ax-addcl 7730  ax-addrcl 7731  ax-mulcl 7732  ax-addcom 7734  ax-addass 7736  ax-distr 7738  ax-i2m1 7739  ax-0lt1 7740  ax-0id 7742  ax-rnegex 7743  ax-cnre 7745  ax-pre-ltirr 7746  ax-pre-ltwlin 7747  ax-pre-lttrn 7748  ax-pre-ltadd 7750
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7816  df-mnf 7817  df-xr 7818  df-ltxr 7819  df-le 7820  df-sub 7949  df-neg 7950  df-inn 8735  df-n0 8992  df-z 9069
This theorem is referenced by:  2tnp1ge0ge0  10088
  Copyright terms: Public domain W3C validator