ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  btwnzge0 Unicode version

Theorem btwnzge0 10326
Description: A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of [Gleason] p. 217. (Contributed by NM, 12-Mar-2005.)
Assertion
Ref Expression
btwnzge0  |-  ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  ->  (
0  <_  A  <->  0  <_  N ) )

Proof of Theorem btwnzge0
StepHypRef Expression
1 0red 7983 . . . 4  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  -> 
0  e.  RR )
2 simplll 533 . . . 4  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  ->  A  e.  RR )
3 simplr 528 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  ->  N  e.  ZZ )
43zred 9400 . . . . . 6  |-  ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  ->  N  e.  RR )
54adantr 276 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  ->  N  e.  RR )
6 1red 7997 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  -> 
1  e.  RR )
75, 6readdcld 8012 . . . 4  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  -> 
( N  +  1 )  e.  RR )
8 simpr 110 . . . 4  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  -> 
0  <_  A )
9 simplrr 536 . . . 4  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  ->  A  <  ( N  + 
1 ) )
101, 2, 7, 8, 9lelttrd 8107 . . 3  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  -> 
0  <  ( N  +  1 ) )
11 0z 9289 . . . . 5  |-  0  e.  ZZ
12 zleltp1 9333 . . . . 5  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  <_  N  <->  0  <  ( N  + 
1 ) ) )
1311, 12mpan 424 . . . 4  |-  ( N  e.  ZZ  ->  (
0  <_  N  <->  0  <  ( N  +  1 ) ) )
1413ad3antlr 493 . . 3  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  -> 
( 0  <_  N  <->  0  <  ( N  + 
1 ) ) )
1510, 14mpbird 167 . 2  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  A )  -> 
0  <_  N )
16 0red 7983 . . 3  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  N )  -> 
0  e.  RR )
174adantr 276 . . 3  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  N )  ->  N  e.  RR )
18 simplll 533 . . 3  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  N )  ->  A  e.  RR )
19 simpr 110 . . 3  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  N )  -> 
0  <_  N )
20 simplrl 535 . . 3  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  N )  ->  N  <_  A )
2116, 17, 18, 19, 20letrd 8106 . 2  |-  ( ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  /\  0  <_  N )  -> 
0  <_  A )
2215, 21impbida 596 1  |-  ( ( ( A  e.  RR  /\  N  e.  ZZ )  /\  ( N  <_  A  /\  A  <  ( N  +  1 ) ) )  ->  (
0  <_  A  <->  0  <_  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2160   class class class wbr 4018  (class class class)co 5892   RRcr 7835   0cc0 7836   1c1 7837    + caddc 7839    < clt 8017    <_ cle 8018   ZZcz 9278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7927  ax-resscn 7928  ax-1cn 7929  ax-1re 7930  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-addcom 7936  ax-addass 7938  ax-distr 7940  ax-i2m1 7941  ax-0lt1 7942  ax-0id 7944  ax-rnegex 7945  ax-cnre 7947  ax-pre-ltirr 7948  ax-pre-ltwlin 7949  ax-pre-lttrn 7950  ax-pre-ltadd 7952
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5234  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-pnf 8019  df-mnf 8020  df-xr 8021  df-ltxr 8022  df-le 8023  df-sub 8155  df-neg 8156  df-inn 8945  df-n0 9202  df-z 9279
This theorem is referenced by:  2tnp1ge0ge0  10327
  Copyright terms: Public domain W3C validator