Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > btwnzge0 | GIF version |
Description: A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of [Gleason] p. 217. (Contributed by NM, 12-Mar-2005.) |
Ref | Expression |
---|---|
btwnzge0 | ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) → (0 ≤ 𝐴 ↔ 0 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 7873 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 ∈ ℝ) | |
2 | simplll 523 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) | |
3 | simplr 520 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) → 𝑁 ∈ ℤ) | |
4 | 3 | zred 9280 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) → 𝑁 ∈ ℝ) |
5 | 4 | adantr 274 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 𝑁 ∈ ℝ) |
6 | 1red 7887 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 1 ∈ ℝ) | |
7 | 5, 6 | readdcld 7901 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → (𝑁 + 1) ∈ ℝ) |
8 | simpr 109 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴) | |
9 | simplrr 526 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 𝐴 < (𝑁 + 1)) | |
10 | 1, 2, 7, 8, 9 | lelttrd 7994 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 < (𝑁 + 1)) |
11 | 0z 9172 | . . . . 5 ⊢ 0 ∈ ℤ | |
12 | zleltp1 9216 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁 ↔ 0 < (𝑁 + 1))) | |
13 | 11, 12 | mpan 421 | . . . 4 ⊢ (𝑁 ∈ ℤ → (0 ≤ 𝑁 ↔ 0 < (𝑁 + 1))) |
14 | 13 | ad3antlr 485 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → (0 ≤ 𝑁 ↔ 0 < (𝑁 + 1))) |
15 | 10, 14 | mpbird 166 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 ≤ 𝑁) |
16 | 0red 7873 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 0 ∈ ℝ) | |
17 | 4 | adantr 274 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℝ) |
18 | simplll 523 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 𝐴 ∈ ℝ) | |
19 | simpr 109 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 0 ≤ 𝑁) | |
20 | simplrl 525 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 𝑁 ≤ 𝐴) | |
21 | 16, 17, 18, 19, 20 | letrd 7993 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 0 ≤ 𝐴) |
22 | 15, 21 | impbida 586 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) → (0 ≤ 𝐴 ↔ 0 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2128 class class class wbr 3965 (class class class)co 5821 ℝcr 7725 0cc0 7726 1c1 7727 + caddc 7729 < clt 7906 ≤ cle 7907 ℤcz 9161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-addass 7828 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-ltadd 7842 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-inn 8828 df-n0 9085 df-z 9162 |
This theorem is referenced by: 2tnp1ge0ge0 10193 |
Copyright terms: Public domain | W3C validator |