![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > btwnzge0 | GIF version |
Description: A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of [Gleason] p. 217. (Contributed by NM, 12-Mar-2005.) |
Ref | Expression |
---|---|
btwnzge0 | ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) → (0 ≤ 𝐴 ↔ 0 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 7955 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 ∈ ℝ) | |
2 | simplll 533 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) | |
3 | simplr 528 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) → 𝑁 ∈ ℤ) | |
4 | 3 | zred 9371 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) → 𝑁 ∈ ℝ) |
5 | 4 | adantr 276 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 𝑁 ∈ ℝ) |
6 | 1red 7969 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 1 ∈ ℝ) | |
7 | 5, 6 | readdcld 7983 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → (𝑁 + 1) ∈ ℝ) |
8 | simpr 110 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴) | |
9 | simplrr 536 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 𝐴 < (𝑁 + 1)) | |
10 | 1, 2, 7, 8, 9 | lelttrd 8078 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 < (𝑁 + 1)) |
11 | 0z 9260 | . . . . 5 ⊢ 0 ∈ ℤ | |
12 | zleltp1 9304 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁 ↔ 0 < (𝑁 + 1))) | |
13 | 11, 12 | mpan 424 | . . . 4 ⊢ (𝑁 ∈ ℤ → (0 ≤ 𝑁 ↔ 0 < (𝑁 + 1))) |
14 | 13 | ad3antlr 493 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → (0 ≤ 𝑁 ↔ 0 < (𝑁 + 1))) |
15 | 10, 14 | mpbird 167 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 ≤ 𝑁) |
16 | 0red 7955 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 0 ∈ ℝ) | |
17 | 4 | adantr 276 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℝ) |
18 | simplll 533 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 𝐴 ∈ ℝ) | |
19 | simpr 110 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 0 ≤ 𝑁) | |
20 | simplrl 535 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 𝑁 ≤ 𝐴) | |
21 | 16, 17, 18, 19, 20 | letrd 8077 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 0 ≤ 𝐴) |
22 | 15, 21 | impbida 596 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) → (0 ≤ 𝐴 ↔ 0 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2148 class class class wbr 4002 (class class class)co 5872 ℝcr 7807 0cc0 7808 1c1 7809 + caddc 7811 < clt 7988 ≤ cle 7989 ℤcz 9249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4120 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 ax-cnex 7899 ax-resscn 7900 ax-1cn 7901 ax-1re 7902 ax-icn 7903 ax-addcl 7904 ax-addrcl 7905 ax-mulcl 7906 ax-addcom 7908 ax-addass 7910 ax-distr 7912 ax-i2m1 7913 ax-0lt1 7914 ax-0id 7916 ax-rnegex 7917 ax-cnre 7919 ax-pre-ltirr 7920 ax-pre-ltwlin 7921 ax-pre-lttrn 7922 ax-pre-ltadd 7924 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4003 df-opab 4064 df-id 4292 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-iota 5177 df-fun 5217 df-fv 5223 df-riota 5828 df-ov 5875 df-oprab 5876 df-mpo 5877 df-pnf 7990 df-mnf 7991 df-xr 7992 df-ltxr 7993 df-le 7994 df-sub 8126 df-neg 8127 df-inn 8916 df-n0 9173 df-z 9250 |
This theorem is referenced by: 2tnp1ge0ge0 10296 |
Copyright terms: Public domain | W3C validator |