ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  btwnzge0 GIF version

Theorem btwnzge0 10295
Description: A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of [Gleason] p. 217. (Contributed by NM, 12-Mar-2005.)
Assertion
Ref Expression
btwnzge0 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) → (0 ≤ 𝐴 ↔ 0 ≤ 𝑁))

Proof of Theorem btwnzge0
StepHypRef Expression
1 0red 7955 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 ∈ ℝ)
2 simplll 533 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
3 simplr 528 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) → 𝑁 ∈ ℤ)
43zred 9371 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) → 𝑁 ∈ ℝ)
54adantr 276 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 𝑁 ∈ ℝ)
6 1red 7969 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 1 ∈ ℝ)
75, 6readdcld 7983 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → (𝑁 + 1) ∈ ℝ)
8 simpr 110 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴)
9 simplrr 536 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 𝐴 < (𝑁 + 1))
101, 2, 7, 8, 9lelttrd 8078 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 < (𝑁 + 1))
11 0z 9260 . . . . 5 0 ∈ ℤ
12 zleltp1 9304 . . . . 5 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁 ↔ 0 < (𝑁 + 1)))
1311, 12mpan 424 . . . 4 (𝑁 ∈ ℤ → (0 ≤ 𝑁 ↔ 0 < (𝑁 + 1)))
1413ad3antlr 493 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → (0 ≤ 𝑁 ↔ 0 < (𝑁 + 1)))
1510, 14mpbird 167 . 2 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 ≤ 𝑁)
16 0red 7955 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 0 ∈ ℝ)
174adantr 276 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℝ)
18 simplll 533 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 𝐴 ∈ ℝ)
19 simpr 110 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 0 ≤ 𝑁)
20 simplrl 535 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 𝑁𝐴)
2116, 17, 18, 19, 20letrd 8077 . 2 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 0 ≤ 𝐴)
2215, 21impbida 596 1 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) → (0 ≤ 𝐴 ↔ 0 ≤ 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2148   class class class wbr 4002  (class class class)co 5872  cr 7807  0cc0 7808  1c1 7809   + caddc 7811   < clt 7988  cle 7989  cz 9249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-addcom 7908  ax-addass 7910  ax-distr 7912  ax-i2m1 7913  ax-0lt1 7914  ax-0id 7916  ax-rnegex 7917  ax-cnre 7919  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-ltadd 7924
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4003  df-opab 4064  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-iota 5177  df-fun 5217  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-sub 8126  df-neg 8127  df-inn 8916  df-n0 9173  df-z 9250
This theorem is referenced by:  2tnp1ge0ge0  10296
  Copyright terms: Public domain W3C validator