ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  btwnzge0 GIF version

Theorem btwnzge0 10465
Description: A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of [Gleason] p. 217. (Contributed by NM, 12-Mar-2005.)
Assertion
Ref Expression
btwnzge0 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) → (0 ≤ 𝐴 ↔ 0 ≤ 𝑁))

Proof of Theorem btwnzge0
StepHypRef Expression
1 0red 8093 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 ∈ ℝ)
2 simplll 533 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
3 simplr 528 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) → 𝑁 ∈ ℤ)
43zred 9515 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) → 𝑁 ∈ ℝ)
54adantr 276 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 𝑁 ∈ ℝ)
6 1red 8107 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 1 ∈ ℝ)
75, 6readdcld 8122 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → (𝑁 + 1) ∈ ℝ)
8 simpr 110 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴)
9 simplrr 536 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 𝐴 < (𝑁 + 1))
101, 2, 7, 8, 9lelttrd 8217 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 < (𝑁 + 1))
11 0z 9403 . . . . 5 0 ∈ ℤ
12 zleltp1 9448 . . . . 5 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁 ↔ 0 < (𝑁 + 1)))
1311, 12mpan 424 . . . 4 (𝑁 ∈ ℤ → (0 ≤ 𝑁 ↔ 0 < (𝑁 + 1)))
1413ad3antlr 493 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → (0 ≤ 𝑁 ↔ 0 < (𝑁 + 1)))
1510, 14mpbird 167 . 2 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 ≤ 𝑁)
16 0red 8093 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 0 ∈ ℝ)
174adantr 276 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℝ)
18 simplll 533 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 𝐴 ∈ ℝ)
19 simpr 110 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 0 ≤ 𝑁)
20 simplrl 535 . . 3 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 𝑁𝐴)
2116, 17, 18, 19, 20letrd 8216 . 2 ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 0 ≤ 𝐴)
2215, 21impbida 596 1 (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁𝐴𝐴 < (𝑁 + 1))) → (0 ≤ 𝐴 ↔ 0 ≤ 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2177   class class class wbr 4051  (class class class)co 5957  cr 7944  0cc0 7945  1c1 7946   + caddc 7948   < clt 8127  cle 8128  cz 9392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393
This theorem is referenced by:  2tnp1ge0ge0  10466
  Copyright terms: Public domain W3C validator