Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > btwnzge0 | GIF version |
Description: A real bounded between an integer and its successor is nonnegative iff the integer is nonnegative. Second half of Lemma 13-4.1 of [Gleason] p. 217. (Contributed by NM, 12-Mar-2005.) |
Ref | Expression |
---|---|
btwnzge0 | ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) → (0 ≤ 𝐴 ↔ 0 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 7921 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 ∈ ℝ) | |
2 | simplll 528 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ) | |
3 | simplr 525 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) → 𝑁 ∈ ℤ) | |
4 | 3 | zred 9334 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) → 𝑁 ∈ ℝ) |
5 | 4 | adantr 274 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 𝑁 ∈ ℝ) |
6 | 1red 7935 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 1 ∈ ℝ) | |
7 | 5, 6 | readdcld 7949 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → (𝑁 + 1) ∈ ℝ) |
8 | simpr 109 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴) | |
9 | simplrr 531 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 𝐴 < (𝑁 + 1)) | |
10 | 1, 2, 7, 8, 9 | lelttrd 8044 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 < (𝑁 + 1)) |
11 | 0z 9223 | . . . . 5 ⊢ 0 ∈ ℤ | |
12 | zleltp1 9267 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁 ↔ 0 < (𝑁 + 1))) | |
13 | 11, 12 | mpan 422 | . . . 4 ⊢ (𝑁 ∈ ℤ → (0 ≤ 𝑁 ↔ 0 < (𝑁 + 1))) |
14 | 13 | ad3antlr 490 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → (0 ≤ 𝑁 ↔ 0 < (𝑁 + 1))) |
15 | 10, 14 | mpbird 166 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝐴) → 0 ≤ 𝑁) |
16 | 0red 7921 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 0 ∈ ℝ) | |
17 | 4 | adantr 274 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 𝑁 ∈ ℝ) |
18 | simplll 528 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 𝐴 ∈ ℝ) | |
19 | simpr 109 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 0 ≤ 𝑁) | |
20 | simplrl 530 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 𝑁 ≤ 𝐴) | |
21 | 16, 17, 18, 19, 20 | letrd 8043 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) ∧ 0 ≤ 𝑁) → 0 ≤ 𝐴) |
22 | 15, 21 | impbida 591 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ≤ 𝐴 ∧ 𝐴 < (𝑁 + 1))) → (0 ≤ 𝐴 ↔ 0 ≤ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 ℝcr 7773 0cc0 7774 1c1 7775 + caddc 7777 < clt 7954 ≤ cle 7955 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: 2tnp1ge0ge0 10257 |
Copyright terms: Public domain | W3C validator |