ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulsubdivbinom2ap Unicode version

Theorem mulsubdivbinom2ap 10785
Description: The square of a binomial with factor minus a number divided by a number apart from zero. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
mulsubdivbinom2ap  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A )  +  B
) ^ 2 )  -  D )  /  C )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( ( B ^ 2 )  -  D )  /  C ) ) )

Proof of Theorem mulsubdivbinom2ap
StepHypRef Expression
1 simp1 999 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  A  e.  CC )
21adantr 276 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  A  e.  CC )
3 simpl2 1003 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  B  e.  CC )
4 simpl 109 . . . 4  |-  ( ( C  e.  CC  /\  C #  0 )  ->  C  e.  CC )
54adantl 277 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  C  e.  CC )
6 mulbinom2 10730 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( C  x.  A )  +  B
) ^ 2 )  =  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) ) )
76oveq1d 5934 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( ( C  x.  A )  +  B ) ^ 2 )  -  D )  =  ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) )  -  D ) )
87oveq1d 5934 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( ( ( C  x.  A )  +  B ) ^
2 )  -  D
)  /  C )  =  ( ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  D )  /  C ) )
92, 3, 5, 8syl3anc 1249 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A )  +  B
) ^ 2 )  -  D )  /  C )  =  ( ( ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  -  D
)  /  C ) )
105, 2mulcld 8042 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( C  x.  A )  e.  CC )
1110sqcld 10745 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( C  x.  A ) ^
2 )  e.  CC )
12 2cnd 9057 . . . . . . . . . 10  |-  ( C  e.  CC  ->  2  e.  CC )
13 id 19 . . . . . . . . . 10  |-  ( C  e.  CC  ->  C  e.  CC )
1412, 13mulcld 8042 . . . . . . . . 9  |-  ( C  e.  CC  ->  (
2  x.  C )  e.  CC )
1514adantr 276 . . . . . . . 8  |-  ( ( C  e.  CC  /\  C #  0 )  ->  (
2  x.  C )  e.  CC )
1615adantl 277 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( 2  x.  C )  e.  CC )
17 mulcl 8001 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
18173adant3 1019 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  ( A  x.  B )  e.  CC )
1918adantr 276 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( A  x.  B )  e.  CC )
2016, 19mulcld 8042 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( 2  x.  C )  x.  ( A  x.  B
) )  e.  CC )
2111, 20addcld 8041 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B )
) )  e.  CC )
22 sqcl 10674 . . . . . . 7  |-  ( B  e.  CC  ->  ( B ^ 2 )  e.  CC )
23223ad2ant2 1021 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  ( B ^ 2 )  e.  CC )
2423adantr 276 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( B ^
2 )  e.  CC )
2521, 24addcld 8041 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  e.  CC )
26 simpl3 1004 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  D  e.  CC )
27 simpr 110 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( C  e.  CC  /\  C #  0 ) )
28 divsubdirap 8729 . . . 4  |-  ( ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) )  e.  CC  /\  D  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) )  -  D )  /  C
)  =  ( ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) )  /  C )  -  ( D  /  C ) ) )
2925, 26, 27, 28syl3anc 1249 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  D )  /  C )  =  ( ( ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  /  C
)  -  ( D  /  C ) ) )
30 divdirap 8718 . . . . . 6  |-  ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  e.  CC  /\  ( B ^ 2 )  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  /  C
)  =  ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  /  C )  +  ( ( B ^ 2 )  /  C ) ) )
3121, 24, 27, 30syl3anc 1249 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) )  /  C )  =  ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B )
) )  /  C
)  +  ( ( B ^ 2 )  /  C ) ) )
32 divdirap 8718 . . . . . . . 8  |-  ( ( ( ( C  x.  A ) ^ 2 )  e.  CC  /\  ( ( 2  x.  C )  x.  ( A  x.  B )
)  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  /  C )  =  ( ( ( ( C  x.  A ) ^
2 )  /  C
)  +  ( ( ( 2  x.  C
)  x.  ( A  x.  B ) )  /  C ) ) )
3311, 20, 27, 32syl3anc 1249 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  /  C )  =  ( ( ( ( C  x.  A ) ^
2 )  /  C
)  +  ( ( ( 2  x.  C
)  x.  ( A  x.  B ) )  /  C ) ) )
34 sqmul 10675 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  A  e.  CC )  ->  ( ( C  x.  A ) ^ 2 )  =  ( ( C ^ 2 )  x.  ( A ^
2 ) ) )
354, 1, 34syl2anr 290 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( C  x.  A ) ^
2 )  =  ( ( C ^ 2 )  x.  ( A ^ 2 ) ) )
3635oveq1d 5934 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C  x.  A ) ^ 2 )  /  C )  =  ( ( ( C ^
2 )  x.  ( A ^ 2 ) )  /  C ) )
37 sqcl 10674 . . . . . . . . . . . 12  |-  ( C  e.  CC  ->  ( C ^ 2 )  e.  CC )
3837adantr 276 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  C #  0 )  ->  ( C ^ 2 )  e.  CC )
3938adantl 277 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( C ^
2 )  e.  CC )
40 sqcl 10674 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
41403ad2ant1 1020 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  ( A ^ 2 )  e.  CC )
4241adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( A ^
2 )  e.  CC )
43 div23ap 8712 . . . . . . . . . 10  |-  ( ( ( C ^ 2 )  e.  CC  /\  ( A ^ 2 )  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( C ^ 2 )  x.  ( A ^ 2 ) )  /  C
)  =  ( ( ( C ^ 2 )  /  C )  x.  ( A ^
2 ) ) )
4439, 42, 27, 43syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C ^ 2 )  x.  ( A ^
2 ) )  /  C )  =  ( ( ( C ^
2 )  /  C
)  x.  ( A ^ 2 ) ) )
45 sqdividap 10678 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  C #  0 )  ->  (
( C ^ 2 )  /  C )  =  C )
4645adantl 277 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( C ^ 2 )  /  C )  =  C )
4746oveq1d 5934 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C ^ 2 )  /  C )  x.  ( A ^ 2 ) )  =  ( C  x.  ( A ^ 2 ) ) )
4836, 44, 473eqtrd 2230 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C  x.  A ) ^ 2 )  /  C )  =  ( C  x.  ( A ^ 2 ) ) )
49 div23ap 8712 . . . . . . . . . 10  |-  ( ( ( 2  x.  C
)  e.  CC  /\  ( A  x.  B
)  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( 2  x.  C )  x.  ( A  x.  B ) )  /  C )  =  ( ( ( 2  x.  C )  /  C
)  x.  ( A  x.  B ) ) )
5016, 19, 27, 49syl3anc 1249 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( 2  x.  C )  x.  ( A  x.  B ) )  /  C )  =  ( ( ( 2  x.  C )  /  C
)  x.  ( A  x.  B ) ) )
51 2cnd 9057 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  C #  0 )  ->  2  e.  CC )
52 simpr 110 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  C #  0 )  ->  C #  0 )
5351, 4, 52divcanap4d 8817 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  C #  0 )  ->  (
( 2  x.  C
)  /  C )  =  2 )
5453adantl 277 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( 2  x.  C )  /  C )  =  2 )
5554oveq1d 5934 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( 2  x.  C )  /  C )  x.  ( A  x.  B
) )  =  ( 2  x.  ( A  x.  B ) ) )
5650, 55eqtrd 2226 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( 2  x.  C )  x.  ( A  x.  B ) )  /  C )  =  ( 2  x.  ( A  x.  B ) ) )
5748, 56oveq12d 5937 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  A
) ^ 2 )  /  C )  +  ( ( ( 2  x.  C )  x.  ( A  x.  B
) )  /  C
) )  =  ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) ) )
5833, 57eqtrd 2226 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  /  C )  =  ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) ) )
5958oveq1d 5934 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B ) ) )  /  C )  +  ( ( B ^
2 )  /  C
) )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( B ^ 2 )  /  C ) ) )
6031, 59eqtrd 2226 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) )  /  C )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( B ^ 2 )  /  C ) ) )
6160oveq1d 5934 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  /  C )  -  ( D  /  C
) )  =  ( ( ( ( C  x.  ( A ^
2 ) )  +  ( 2  x.  ( A  x.  B )
) )  +  ( ( B ^ 2 )  /  C ) )  -  ( D  /  C ) ) )
625, 42mulcld 8042 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( C  x.  ( A ^ 2 ) )  e.  CC )
63 2cnd 9057 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  CC )
6463, 17mulcld 8042 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  B )
)  e.  CC )
65643adant3 1019 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  (
2  x.  ( A  x.  B ) )  e.  CC )
6665adantr 276 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( 2  x.  ( A  x.  B
) )  e.  CC )
6762, 66addcld 8041 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( C  x.  ( A ^
2 ) )  +  ( 2  x.  ( A  x.  B )
) )  e.  CC )
6852adantl 277 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  C #  0 )
6924, 5, 68divclapd 8811 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( B ^ 2 )  /  C )  e.  CC )
7026, 5, 68divclapd 8811 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( D  /  C )  e.  CC )
7167, 69, 70addsubassd 8352 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( ( B ^
2 )  /  C
) )  -  ( D  /  C ) )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( ( ( B ^ 2 )  /  C )  -  ( D  /  C ) ) ) )
7229, 61, 713eqtrd 2230 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  D )  /  C )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( ( B ^ 2 )  /  C )  -  ( D  /  C
) ) ) )
73 divsubdirap 8729 . . . . 5  |-  ( ( ( B ^ 2 )  e.  CC  /\  D  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( B ^ 2 )  -  D )  /  C
)  =  ( ( ( B ^ 2 )  /  C )  -  ( D  /  C ) ) )
7424, 26, 27, 73syl3anc 1249 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( B ^ 2 )  -  D )  /  C )  =  ( ( ( B ^
2 )  /  C
)  -  ( D  /  C ) ) )
7574eqcomd 2199 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( B ^ 2 )  /  C )  -  ( D  /  C
) )  =  ( ( ( B ^
2 )  -  D
)  /  C ) )
7675oveq2d 5935 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( ( ( B ^ 2 )  /  C )  -  ( D  /  C ) ) )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( ( ( B ^ 2 )  -  D )  /  C
) ) )
779, 72, 763eqtrd 2230 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A )  +  B
) ^ 2 )  -  D )  /  C )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( ( B ^ 2 )  -  D )  /  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4030  (class class class)co 5919   CCcc 7872   0cc0 7874    + caddc 7877    x. cmul 7879    - cmin 8192   # cap 8602    / cdiv 8693   2c2 9035   ^cexp 10612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596  df-seqfrec 10522  df-exp 10613
This theorem is referenced by:  2lgsoddprmlem1  15262
  Copyright terms: Public domain W3C validator