ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulsubdivbinom2ap Unicode version

Theorem mulsubdivbinom2ap 10893
Description: The square of a binomial with factor minus a number divided by a number apart from zero. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
mulsubdivbinom2ap  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A )  +  B
) ^ 2 )  -  D )  /  C )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( ( B ^ 2 )  -  D )  /  C ) ) )

Proof of Theorem mulsubdivbinom2ap
StepHypRef Expression
1 simp1 1000 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  A  e.  CC )
21adantr 276 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  A  e.  CC )
3 simpl2 1004 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  B  e.  CC )
4 simpl 109 . . . 4  |-  ( ( C  e.  CC  /\  C #  0 )  ->  C  e.  CC )
54adantl 277 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  C  e.  CC )
6 mulbinom2 10838 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( C  x.  A )  +  B
) ^ 2 )  =  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) ) )
76oveq1d 5982 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( ( C  x.  A )  +  B ) ^ 2 )  -  D )  =  ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) )  -  D ) )
87oveq1d 5982 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( ( ( C  x.  A )  +  B ) ^
2 )  -  D
)  /  C )  =  ( ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  D )  /  C ) )
92, 3, 5, 8syl3anc 1250 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A )  +  B
) ^ 2 )  -  D )  /  C )  =  ( ( ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  -  D
)  /  C ) )
105, 2mulcld 8128 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( C  x.  A )  e.  CC )
1110sqcld 10853 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( C  x.  A ) ^
2 )  e.  CC )
12 2cnd 9144 . . . . . . . . . 10  |-  ( C  e.  CC  ->  2  e.  CC )
13 id 19 . . . . . . . . . 10  |-  ( C  e.  CC  ->  C  e.  CC )
1412, 13mulcld 8128 . . . . . . . . 9  |-  ( C  e.  CC  ->  (
2  x.  C )  e.  CC )
1514adantr 276 . . . . . . . 8  |-  ( ( C  e.  CC  /\  C #  0 )  ->  (
2  x.  C )  e.  CC )
1615adantl 277 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( 2  x.  C )  e.  CC )
17 mulcl 8087 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
18173adant3 1020 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  ( A  x.  B )  e.  CC )
1918adantr 276 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( A  x.  B )  e.  CC )
2016, 19mulcld 8128 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( 2  x.  C )  x.  ( A  x.  B
) )  e.  CC )
2111, 20addcld 8127 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B )
) )  e.  CC )
22 sqcl 10782 . . . . . . 7  |-  ( B  e.  CC  ->  ( B ^ 2 )  e.  CC )
23223ad2ant2 1022 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  ( B ^ 2 )  e.  CC )
2423adantr 276 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( B ^
2 )  e.  CC )
2521, 24addcld 8127 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  e.  CC )
26 simpl3 1005 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  D  e.  CC )
27 simpr 110 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( C  e.  CC  /\  C #  0 ) )
28 divsubdirap 8816 . . . 4  |-  ( ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) )  e.  CC  /\  D  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) )  -  D )  /  C
)  =  ( ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) )  /  C )  -  ( D  /  C ) ) )
2925, 26, 27, 28syl3anc 1250 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  D )  /  C )  =  ( ( ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  /  C
)  -  ( D  /  C ) ) )
30 divdirap 8805 . . . . . 6  |-  ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  e.  CC  /\  ( B ^ 2 )  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  /  C
)  =  ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  /  C )  +  ( ( B ^ 2 )  /  C ) ) )
3121, 24, 27, 30syl3anc 1250 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) )  /  C )  =  ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B )
) )  /  C
)  +  ( ( B ^ 2 )  /  C ) ) )
32 divdirap 8805 . . . . . . . 8  |-  ( ( ( ( C  x.  A ) ^ 2 )  e.  CC  /\  ( ( 2  x.  C )  x.  ( A  x.  B )
)  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  /  C )  =  ( ( ( ( C  x.  A ) ^
2 )  /  C
)  +  ( ( ( 2  x.  C
)  x.  ( A  x.  B ) )  /  C ) ) )
3311, 20, 27, 32syl3anc 1250 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  /  C )  =  ( ( ( ( C  x.  A ) ^
2 )  /  C
)  +  ( ( ( 2  x.  C
)  x.  ( A  x.  B ) )  /  C ) ) )
34 sqmul 10783 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  A  e.  CC )  ->  ( ( C  x.  A ) ^ 2 )  =  ( ( C ^ 2 )  x.  ( A ^
2 ) ) )
354, 1, 34syl2anr 290 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( C  x.  A ) ^
2 )  =  ( ( C ^ 2 )  x.  ( A ^ 2 ) ) )
3635oveq1d 5982 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C  x.  A ) ^ 2 )  /  C )  =  ( ( ( C ^
2 )  x.  ( A ^ 2 ) )  /  C ) )
37 sqcl 10782 . . . . . . . . . . . 12  |-  ( C  e.  CC  ->  ( C ^ 2 )  e.  CC )
3837adantr 276 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  C #  0 )  ->  ( C ^ 2 )  e.  CC )
3938adantl 277 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( C ^
2 )  e.  CC )
40 sqcl 10782 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
41403ad2ant1 1021 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  ( A ^ 2 )  e.  CC )
4241adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( A ^
2 )  e.  CC )
43 div23ap 8799 . . . . . . . . . 10  |-  ( ( ( C ^ 2 )  e.  CC  /\  ( A ^ 2 )  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( C ^ 2 )  x.  ( A ^ 2 ) )  /  C
)  =  ( ( ( C ^ 2 )  /  C )  x.  ( A ^
2 ) ) )
4439, 42, 27, 43syl3anc 1250 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C ^ 2 )  x.  ( A ^
2 ) )  /  C )  =  ( ( ( C ^
2 )  /  C
)  x.  ( A ^ 2 ) ) )
45 sqdividap 10786 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  C #  0 )  ->  (
( C ^ 2 )  /  C )  =  C )
4645adantl 277 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( C ^ 2 )  /  C )  =  C )
4746oveq1d 5982 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C ^ 2 )  /  C )  x.  ( A ^ 2 ) )  =  ( C  x.  ( A ^ 2 ) ) )
4836, 44, 473eqtrd 2244 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C  x.  A ) ^ 2 )  /  C )  =  ( C  x.  ( A ^ 2 ) ) )
49 div23ap 8799 . . . . . . . . . 10  |-  ( ( ( 2  x.  C
)  e.  CC  /\  ( A  x.  B
)  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( 2  x.  C )  x.  ( A  x.  B ) )  /  C )  =  ( ( ( 2  x.  C )  /  C
)  x.  ( A  x.  B ) ) )
5016, 19, 27, 49syl3anc 1250 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( 2  x.  C )  x.  ( A  x.  B ) )  /  C )  =  ( ( ( 2  x.  C )  /  C
)  x.  ( A  x.  B ) ) )
51 2cnd 9144 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  C #  0 )  ->  2  e.  CC )
52 simpr 110 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  C #  0 )  ->  C #  0 )
5351, 4, 52divcanap4d 8904 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  C #  0 )  ->  (
( 2  x.  C
)  /  C )  =  2 )
5453adantl 277 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( 2  x.  C )  /  C )  =  2 )
5554oveq1d 5982 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( 2  x.  C )  /  C )  x.  ( A  x.  B
) )  =  ( 2  x.  ( A  x.  B ) ) )
5650, 55eqtrd 2240 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( 2  x.  C )  x.  ( A  x.  B ) )  /  C )  =  ( 2  x.  ( A  x.  B ) ) )
5748, 56oveq12d 5985 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  A
) ^ 2 )  /  C )  +  ( ( ( 2  x.  C )  x.  ( A  x.  B
) )  /  C
) )  =  ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) ) )
5833, 57eqtrd 2240 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  /  C )  =  ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) ) )
5958oveq1d 5982 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B ) ) )  /  C )  +  ( ( B ^
2 )  /  C
) )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( B ^ 2 )  /  C ) ) )
6031, 59eqtrd 2240 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) )  /  C )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( B ^ 2 )  /  C ) ) )
6160oveq1d 5982 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  /  C )  -  ( D  /  C
) )  =  ( ( ( ( C  x.  ( A ^
2 ) )  +  ( 2  x.  ( A  x.  B )
) )  +  ( ( B ^ 2 )  /  C ) )  -  ( D  /  C ) ) )
625, 42mulcld 8128 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( C  x.  ( A ^ 2 ) )  e.  CC )
63 2cnd 9144 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  CC )
6463, 17mulcld 8128 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  B )
)  e.  CC )
65643adant3 1020 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  (
2  x.  ( A  x.  B ) )  e.  CC )
6665adantr 276 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( 2  x.  ( A  x.  B
) )  e.  CC )
6762, 66addcld 8127 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( C  x.  ( A ^
2 ) )  +  ( 2  x.  ( A  x.  B )
) )  e.  CC )
6852adantl 277 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  C #  0 )
6924, 5, 68divclapd 8898 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( B ^ 2 )  /  C )  e.  CC )
7026, 5, 68divclapd 8898 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( D  /  C )  e.  CC )
7167, 69, 70addsubassd 8438 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( ( B ^
2 )  /  C
) )  -  ( D  /  C ) )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( ( ( B ^ 2 )  /  C )  -  ( D  /  C ) ) ) )
7229, 61, 713eqtrd 2244 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  D )  /  C )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( ( B ^ 2 )  /  C )  -  ( D  /  C
) ) ) )
73 divsubdirap 8816 . . . . 5  |-  ( ( ( B ^ 2 )  e.  CC  /\  D  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( B ^ 2 )  -  D )  /  C
)  =  ( ( ( B ^ 2 )  /  C )  -  ( D  /  C ) ) )
7424, 26, 27, 73syl3anc 1250 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( B ^ 2 )  -  D )  /  C )  =  ( ( ( B ^
2 )  /  C
)  -  ( D  /  C ) ) )
7574eqcomd 2213 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( B ^ 2 )  /  C )  -  ( D  /  C
) )  =  ( ( ( B ^
2 )  -  D
)  /  C ) )
7675oveq2d 5983 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( ( ( B ^ 2 )  /  C )  -  ( D  /  C ) ) )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( ( ( B ^ 2 )  -  D )  /  C
) ) )
779, 72, 763eqtrd 2244 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A )  +  B
) ^ 2 )  -  D )  /  C )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( ( B ^ 2 )  -  D )  /  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   CCcc 7958   0cc0 7960    + caddc 7963    x. cmul 7965    - cmin 8278   # cap 8689    / cdiv 8780   2c2 9122   ^cexp 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630  df-exp 10721
This theorem is referenced by:  2lgsoddprmlem1  15697
  Copyright terms: Public domain W3C validator