ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulsubdivbinom2ap Unicode version

Theorem mulsubdivbinom2ap 10705
Description: The square of a binomial with factor minus a number divided by a number apart from zero. (Contributed by AV, 19-Jul-2021.)
Assertion
Ref Expression
mulsubdivbinom2ap  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A )  +  B
) ^ 2 )  -  D )  /  C )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( ( B ^ 2 )  -  D )  /  C ) ) )

Proof of Theorem mulsubdivbinom2ap
StepHypRef Expression
1 simp1 998 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  A  e.  CC )
21adantr 276 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  A  e.  CC )
3 simpl2 1002 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  B  e.  CC )
4 simpl 109 . . . 4  |-  ( ( C  e.  CC  /\  C #  0 )  ->  C  e.  CC )
54adantl 277 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  C  e.  CC )
6 mulbinom2 10651 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( C  x.  A )  +  B
) ^ 2 )  =  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) ) )
76oveq1d 5903 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( ( C  x.  A )  +  B ) ^ 2 )  -  D )  =  ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) )  -  D ) )
87oveq1d 5903 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( ( ( ( C  x.  A )  +  B ) ^
2 )  -  D
)  /  C )  =  ( ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  D )  /  C ) )
92, 3, 5, 8syl3anc 1248 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A )  +  B
) ^ 2 )  -  D )  /  C )  =  ( ( ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  -  D
)  /  C ) )
105, 2mulcld 7992 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( C  x.  A )  e.  CC )
1110sqcld 10666 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( C  x.  A ) ^
2 )  e.  CC )
12 2cnd 9006 . . . . . . . . . 10  |-  ( C  e.  CC  ->  2  e.  CC )
13 id 19 . . . . . . . . . 10  |-  ( C  e.  CC  ->  C  e.  CC )
1412, 13mulcld 7992 . . . . . . . . 9  |-  ( C  e.  CC  ->  (
2  x.  C )  e.  CC )
1514adantr 276 . . . . . . . 8  |-  ( ( C  e.  CC  /\  C #  0 )  ->  (
2  x.  C )  e.  CC )
1615adantl 277 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( 2  x.  C )  e.  CC )
17 mulcl 7952 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
18173adant3 1018 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  ( A  x.  B )  e.  CC )
1918adantr 276 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( A  x.  B )  e.  CC )
2016, 19mulcld 7992 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( 2  x.  C )  x.  ( A  x.  B
) )  e.  CC )
2111, 20addcld 7991 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B )
) )  e.  CC )
22 sqcl 10595 . . . . . . 7  |-  ( B  e.  CC  ->  ( B ^ 2 )  e.  CC )
23223ad2ant2 1020 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  ( B ^ 2 )  e.  CC )
2423adantr 276 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( B ^
2 )  e.  CC )
2521, 24addcld 7991 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  e.  CC )
26 simpl3 1003 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  D  e.  CC )
27 simpr 110 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( C  e.  CC  /\  C #  0 ) )
28 divsubdirap 8679 . . . 4  |-  ( ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) )  e.  CC  /\  D  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) )  -  D )  /  C
)  =  ( ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) )  /  C )  -  ( D  /  C ) ) )
2925, 26, 27, 28syl3anc 1248 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  D )  /  C )  =  ( ( ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  /  C
)  -  ( D  /  C ) ) )
30 divdirap 8668 . . . . . 6  |-  ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  e.  CC  /\  ( B ^ 2 )  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  /  C
)  =  ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  /  C )  +  ( ( B ^ 2 )  /  C ) ) )
3121, 24, 27, 30syl3anc 1248 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) )  /  C )  =  ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B )
) )  /  C
)  +  ( ( B ^ 2 )  /  C ) ) )
32 divdirap 8668 . . . . . . . 8  |-  ( ( ( ( C  x.  A ) ^ 2 )  e.  CC  /\  ( ( 2  x.  C )  x.  ( A  x.  B )
)  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  /  C )  =  ( ( ( ( C  x.  A ) ^
2 )  /  C
)  +  ( ( ( 2  x.  C
)  x.  ( A  x.  B ) )  /  C ) ) )
3311, 20, 27, 32syl3anc 1248 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  /  C )  =  ( ( ( ( C  x.  A ) ^
2 )  /  C
)  +  ( ( ( 2  x.  C
)  x.  ( A  x.  B ) )  /  C ) ) )
34 sqmul 10596 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  A  e.  CC )  ->  ( ( C  x.  A ) ^ 2 )  =  ( ( C ^ 2 )  x.  ( A ^
2 ) ) )
354, 1, 34syl2anr 290 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( C  x.  A ) ^
2 )  =  ( ( C ^ 2 )  x.  ( A ^ 2 ) ) )
3635oveq1d 5903 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C  x.  A ) ^ 2 )  /  C )  =  ( ( ( C ^
2 )  x.  ( A ^ 2 ) )  /  C ) )
37 sqcl 10595 . . . . . . . . . . . 12  |-  ( C  e.  CC  ->  ( C ^ 2 )  e.  CC )
3837adantr 276 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  C #  0 )  ->  ( C ^ 2 )  e.  CC )
3938adantl 277 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( C ^
2 )  e.  CC )
40 sqcl 10595 . . . . . . . . . . . 12  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
41403ad2ant1 1019 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  ( A ^ 2 )  e.  CC )
4241adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( A ^
2 )  e.  CC )
43 div23ap 8662 . . . . . . . . . 10  |-  ( ( ( C ^ 2 )  e.  CC  /\  ( A ^ 2 )  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( C ^ 2 )  x.  ( A ^ 2 ) )  /  C
)  =  ( ( ( C ^ 2 )  /  C )  x.  ( A ^
2 ) ) )
4439, 42, 27, 43syl3anc 1248 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C ^ 2 )  x.  ( A ^
2 ) )  /  C )  =  ( ( ( C ^
2 )  /  C
)  x.  ( A ^ 2 ) ) )
45 sqdividap 10599 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  C #  0 )  ->  (
( C ^ 2 )  /  C )  =  C )
4645adantl 277 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( C ^ 2 )  /  C )  =  C )
4746oveq1d 5903 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C ^ 2 )  /  C )  x.  ( A ^ 2 ) )  =  ( C  x.  ( A ^ 2 ) ) )
4836, 44, 473eqtrd 2224 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C  x.  A ) ^ 2 )  /  C )  =  ( C  x.  ( A ^ 2 ) ) )
49 div23ap 8662 . . . . . . . . . 10  |-  ( ( ( 2  x.  C
)  e.  CC  /\  ( A  x.  B
)  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( 2  x.  C )  x.  ( A  x.  B ) )  /  C )  =  ( ( ( 2  x.  C )  /  C
)  x.  ( A  x.  B ) ) )
5016, 19, 27, 49syl3anc 1248 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( 2  x.  C )  x.  ( A  x.  B ) )  /  C )  =  ( ( ( 2  x.  C )  /  C
)  x.  ( A  x.  B ) ) )
51 2cnd 9006 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  C #  0 )  ->  2  e.  CC )
52 simpr 110 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  C #  0 )  ->  C #  0 )
5351, 4, 52divcanap4d 8767 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  C #  0 )  ->  (
( 2  x.  C
)  /  C )  =  2 )
5453adantl 277 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( 2  x.  C )  /  C )  =  2 )
5554oveq1d 5903 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( 2  x.  C )  /  C )  x.  ( A  x.  B
) )  =  ( 2  x.  ( A  x.  B ) ) )
5650, 55eqtrd 2220 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( 2  x.  C )  x.  ( A  x.  B ) )  /  C )  =  ( 2  x.  ( A  x.  B ) ) )
5748, 56oveq12d 5906 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  A
) ^ 2 )  /  C )  +  ( ( ( 2  x.  C )  x.  ( A  x.  B
) )  /  C
) )  =  ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) ) )
5833, 57eqtrd 2220 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  A
) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B
) ) )  /  C )  =  ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) ) )
5958oveq1d 5903 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B ) ) )  /  C )  +  ( ( B ^
2 )  /  C
) )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( B ^ 2 )  /  C ) ) )
6031, 59eqtrd 2220 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A ) ^ 2 )  +  ( ( 2  x.  C )  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) )  /  C )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( B ^ 2 )  /  C ) ) )
6160oveq1d 5903 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  /  C )  -  ( D  /  C
) )  =  ( ( ( ( C  x.  ( A ^
2 ) )  +  ( 2  x.  ( A  x.  B )
) )  +  ( ( B ^ 2 )  /  C ) )  -  ( D  /  C ) ) )
625, 42mulcld 7992 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( C  x.  ( A ^ 2 ) )  e.  CC )
63 2cnd 9006 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  CC )
6463, 17mulcld 7992 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  B )
)  e.  CC )
65643adant3 1018 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  ->  (
2  x.  ( A  x.  B ) )  e.  CC )
6665adantr 276 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( 2  x.  ( A  x.  B
) )  e.  CC )
6762, 66addcld 7991 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( C  x.  ( A ^
2 ) )  +  ( 2  x.  ( A  x.  B )
) )  e.  CC )
6852adantl 277 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  C #  0 )
6924, 5, 68divclapd 8761 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( B ^ 2 )  /  C )  e.  CC )
7026, 5, 68divclapd 8761 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( D  /  C )  e.  CC )
7167, 69, 70addsubassd 8302 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( ( B ^
2 )  /  C
) )  -  ( D  /  C ) )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( ( ( B ^ 2 )  /  C )  -  ( D  /  C ) ) ) )
7229, 61, 713eqtrd 2224 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( ( C  x.  A ) ^
2 )  +  ( ( 2  x.  C
)  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  -  D )  /  C )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( ( B ^ 2 )  /  C )  -  ( D  /  C
) ) ) )
73 divsubdirap 8679 . . . . 5  |-  ( ( ( B ^ 2 )  e.  CC  /\  D  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( ( B ^ 2 )  -  D )  /  C
)  =  ( ( ( B ^ 2 )  /  C )  -  ( D  /  C ) ) )
7424, 26, 27, 73syl3anc 1248 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( B ^ 2 )  -  D )  /  C )  =  ( ( ( B ^
2 )  /  C
)  -  ( D  /  C ) ) )
7574eqcomd 2193 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( B ^ 2 )  /  C )  -  ( D  /  C
) )  =  ( ( ( B ^
2 )  -  D
)  /  C ) )
7675oveq2d 5904 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( ( ( B ^ 2 )  /  C )  -  ( D  /  C ) ) )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( ( ( B ^ 2 )  -  D )  /  C
) ) )
779, 72, 763eqtrd 2224 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  D  e.  CC )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( ( ( ( C  x.  A )  +  B
) ^ 2 )  -  D )  /  C )  =  ( ( ( C  x.  ( A ^ 2 ) )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( ( ( B ^ 2 )  -  D )  /  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 979    = wceq 1363    e. wcel 2158   class class class wbr 4015  (class class class)co 5888   CCcc 7823   0cc0 7825    + caddc 7828    x. cmul 7830    - cmin 8142   # cap 8552    / cdiv 8643   2c2 8984   ^cexp 10533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-n0 9191  df-z 9268  df-uz 9543  df-seqfrec 10460  df-exp 10534
This theorem is referenced by:  2lgsoddprmlem1  14749
  Copyright terms: Public domain W3C validator