ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domnmuln0 Unicode version

Theorem domnmuln0 14245
Description: In a domain, a product of nonzero elements is nonzero. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
domneq0.b  |-  B  =  ( Base `  R
)
domneq0.t  |-  .x.  =  ( .r `  R )
domneq0.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
domnmuln0  |-  ( ( R  e. Domn  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( X  .x.  Y )  =/= 
.0.  )

Proof of Theorem domnmuln0
StepHypRef Expression
1 an4 586 . . 3  |-  ( ( ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/= 
.0.  ) )  <->  ( ( X  e.  B  /\  Y  e.  B )  /\  ( X  =/=  .0.  /\  Y  =/=  .0.  )
) )
2 neanior 2487 . . . . . 6  |-  ( ( X  =/=  .0.  /\  Y  =/=  .0.  )  <->  -.  ( X  =  .0.  \/  Y  =  .0.  )
)
3 domneq0.b . . . . . . . . 9  |-  B  =  ( Base `  R
)
4 domneq0.t . . . . . . . . 9  |-  .x.  =  ( .r `  R )
5 domneq0.z . . . . . . . . 9  |-  .0.  =  ( 0g `  R )
63, 4, 5domneq0 14244 . . . . . . . 8  |-  ( ( R  e. Domn  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .x.  Y
)  =  .0.  <->  ( X  =  .0.  \/  Y  =  .0.  ) ) )
763expb 1228 . . . . . . 7  |-  ( ( R  e. Domn  /\  ( X  e.  B  /\  Y  e.  B )
)  ->  ( ( X  .x.  Y )  =  .0.  <->  ( X  =  .0.  \/  Y  =  .0.  ) ) )
87necon3abid 2439 . . . . . 6  |-  ( ( R  e. Domn  /\  ( X  e.  B  /\  Y  e.  B )
)  ->  ( ( X  .x.  Y )  =/= 
.0. 
<->  -.  ( X  =  .0.  \/  Y  =  .0.  ) ) )
92, 8bitr4id 199 . . . . 5  |-  ( ( R  e. Domn  /\  ( X  e.  B  /\  Y  e.  B )
)  ->  ( ( X  =/=  .0.  /\  Y  =/=  .0.  )  <->  ( X  .x.  Y )  =/=  .0.  ) )
109biimpd 144 . . . 4  |-  ( ( R  e. Domn  /\  ( X  e.  B  /\  Y  e.  B )
)  ->  ( ( X  =/=  .0.  /\  Y  =/=  .0.  )  ->  ( X  .x.  Y )  =/= 
.0.  ) )
1110expimpd 363 . . 3  |-  ( R  e. Domn  ->  ( ( ( X  e.  B  /\  Y  e.  B )  /\  ( X  =/=  .0.  /\  Y  =/=  .0.  )
)  ->  ( X  .x.  Y )  =/=  .0.  ) )
121, 11biimtrid 152 . 2  |-  ( R  e. Domn  ->  ( ( ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( X  .x.  Y )  =/= 
.0.  ) )
13123impib 1225 1  |-  ( ( R  e. Domn  /\  ( X  e.  B  /\  X  =/=  .0.  )  /\  ( Y  e.  B  /\  Y  =/=  .0.  ) )  ->  ( X  .x.  Y )  =/= 
.0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   ` cfv 5318  (class class class)co 6007   Basecbs 13040   .rcmulr 13119   0gc0g 13297  Domncdomn 14228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-mgp 13892  df-ring 13969  df-nzr 14152  df-domn 14231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator