| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > domnmuln0 | GIF version | ||
| Description: In a domain, a product of nonzero elements is nonzero. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| domneq0.b | ⊢ 𝐵 = (Base‘𝑅) |
| domneq0.t | ⊢ · = (.r‘𝑅) |
| domneq0.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| domnmuln0 | ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 586 | . . 3 ⊢ (((𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ))) | |
| 2 | neanior 2487 | . . . . . 6 ⊢ ((𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ↔ ¬ (𝑋 = 0 ∨ 𝑌 = 0 )) | |
| 3 | domneq0.b | . . . . . . . . 9 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | domneq0.t | . . . . . . . . 9 ⊢ · = (.r‘𝑅) | |
| 5 | domneq0.z | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
| 6 | 3, 4, 5 | domneq0 14244 | . . . . . . . 8 ⊢ ((𝑅 ∈ Domn ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
| 7 | 6 | 3expb 1228 | . . . . . . 7 ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
| 8 | 7 | necon3abid 2439 | . . . . . 6 ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 · 𝑌) ≠ 0 ↔ ¬ (𝑋 = 0 ∨ 𝑌 = 0 ))) |
| 9 | 2, 8 | bitr4id 199 | . . . . 5 ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) ↔ (𝑋 · 𝑌) ≠ 0 )) |
| 10 | 9 | biimpd 144 | . . . 4 ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≠ 0 ∧ 𝑌 ≠ 0 ) → (𝑋 · 𝑌) ≠ 0 )) |
| 11 | 10 | expimpd 363 | . . 3 ⊢ (𝑅 ∈ Domn → (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ≠ 0 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 )) |
| 12 | 1, 11 | biimtrid 152 | . 2 ⊢ (𝑅 ∈ Domn → (((𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 )) |
| 13 | 12 | 3impib 1225 | 1 ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 .rcmulr 13119 0gc0g 13297 Domncdomn 14228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-plusg 13131 df-mulr 13132 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-minusg 13545 df-mgp 13892 df-ring 13969 df-nzr 14152 df-domn 14231 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |