ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domnmuln0 GIF version

Theorem domnmuln0 14105
Description: In a domain, a product of nonzero elements is nonzero. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
domneq0.b 𝐵 = (Base‘𝑅)
domneq0.t · = (.r𝑅)
domneq0.z 0 = (0g𝑅)
Assertion
Ref Expression
domnmuln0 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 )

Proof of Theorem domnmuln0
StepHypRef Expression
1 an4 586 . . 3 (((𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) ↔ ((𝑋𝐵𝑌𝐵) ∧ (𝑋0𝑌0 )))
2 neanior 2464 . . . . . 6 ((𝑋0𝑌0 ) ↔ ¬ (𝑋 = 0𝑌 = 0 ))
3 domneq0.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
4 domneq0.t . . . . . . . . 9 · = (.r𝑅)
5 domneq0.z . . . . . . . . 9 0 = (0g𝑅)
63, 4, 5domneq0 14104 . . . . . . . 8 ((𝑅 ∈ Domn ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
763expb 1207 . . . . . . 7 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋 · 𝑌) = 0 ↔ (𝑋 = 0𝑌 = 0 )))
87necon3abid 2416 . . . . . 6 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋 · 𝑌) ≠ 0 ↔ ¬ (𝑋 = 0𝑌 = 0 )))
92, 8bitr4id 199 . . . . 5 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋0𝑌0 ) ↔ (𝑋 · 𝑌) ≠ 0 ))
109biimpd 144 . . . 4 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋0𝑌0 ) → (𝑋 · 𝑌) ≠ 0 ))
1110expimpd 363 . . 3 (𝑅 ∈ Domn → (((𝑋𝐵𝑌𝐵) ∧ (𝑋0𝑌0 )) → (𝑋 · 𝑌) ≠ 0 ))
121, 11biimtrid 152 . 2 (𝑅 ∈ Domn → (((𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 ))
13123impib 1204 1 ((𝑅 ∈ Domn ∧ (𝑋𝐵𝑋0 ) ∧ (𝑌𝐵𝑌0 )) → (𝑋 · 𝑌) ≠ 0 )
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2177  wne 2377  cfv 5279  (class class class)co 5956  Basecbs 12902  .rcmulr 12980  0gc0g 13158  Domncdomn 14088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-pre-ltirr 8052  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-pnf 8124  df-mnf 8125  df-ltxr 8127  df-inn 9052  df-2 9110  df-3 9111  df-ndx 12905  df-slot 12906  df-base 12908  df-sets 12909  df-plusg 12992  df-mulr 12993  df-0g 13160  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-grp 13405  df-minusg 13406  df-mgp 13753  df-ring 13830  df-nzr 14012  df-domn 14091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator