ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsr01 Unicode version

Theorem dvdsr01 13738
Description: In a ring, zero is divisible by all elements. ("Zero divisor" as a term has a somewhat different meaning.) (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
dvdsr0.b  |-  B  =  ( Base `  R
)
dvdsr0.d  |-  .||  =  (
||r `  R )
dvdsr0.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
dvdsr01  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  .|| 
.0.  )

Proof of Theorem dvdsr01
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dvdsr0.b . . . 4  |-  B  =  ( Base `  R
)
2 dvdsr0.z . . . 4  |-  .0.  =  ( 0g `  R )
31, 2ring0cl 13655 . . 3  |-  ( R  e.  Ring  ->  .0.  e.  B )
4 eqid 2196 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
51, 4, 2ringlz 13677 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  ( .r `  R
) X )  =  .0.  )
6 oveq1 5932 . . . . 5  |-  ( x  =  .0.  ->  (
x ( .r `  R ) X )  =  (  .0.  ( .r `  R ) X ) )
76eqeq1d 2205 . . . 4  |-  ( x  =  .0.  ->  (
( x ( .r
`  R ) X )  =  .0.  <->  (  .0.  ( .r `  R ) X )  =  .0.  ) )
87rspcev 2868 . . 3  |-  ( (  .0.  e.  B  /\  (  .0.  ( .r `  R ) X )  =  .0.  )  ->  E. x  e.  B  ( x ( .r
`  R ) X )  =  .0.  )
93, 5, 8syl2an2r 595 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. x  e.  B  ( x
( .r `  R
) X )  =  .0.  )
101a1i 9 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  B  =  ( Base `  R
) )
11 dvdsr0.d . . . 4  |-  .||  =  (
||r `  R )
1211a1i 9 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  .||  =  (
||r `  R ) )
13 ringsrg 13681 . . . 4  |-  ( R  e.  Ring  ->  R  e. SRing
)
1413adantr 276 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  R  e. SRing )
15 eqidd 2197 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( .r `  R )  =  ( .r `  R
) )
16 simpr 110 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  e.  B )
1710, 12, 14, 15, 16dvdsr2d 13729 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .||  .0.  <->  E. x  e.  B  ( x
( .r `  R
) X )  =  .0.  ) )
189, 17mpbird 167 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  .|| 
.0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   E.wrex 2476   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   Basecbs 12705   .rcmulr 12783   0gc0g 12960  SRingcsrg 13597   Ringcrg 13630   ||rcdsr 13720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-3 9069  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-plusg 12795  df-mulr 12796  df-0g 12962  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-minusg 13208  df-cmn 13494  df-abl 13495  df-mgp 13555  df-ur 13594  df-srg 13598  df-ring 13632  df-dvdsr 13723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator