ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsr01 Unicode version

Theorem dvdsr01 13600
Description: In a ring, zero is divisible by all elements. ("Zero divisor" as a term has a somewhat different meaning.) (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypotheses
Ref Expression
dvdsr0.b  |-  B  =  ( Base `  R
)
dvdsr0.d  |-  .||  =  (
||r `  R )
dvdsr0.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
dvdsr01  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  .|| 
.0.  )

Proof of Theorem dvdsr01
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dvdsr0.b . . . 4  |-  B  =  ( Base `  R
)
2 dvdsr0.z . . . 4  |-  .0.  =  ( 0g `  R )
31, 2ring0cl 13517 . . 3  |-  ( R  e.  Ring  ->  .0.  e.  B )
4 eqid 2193 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
51, 4, 2ringlz 13539 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  ( .r `  R
) X )  =  .0.  )
6 oveq1 5925 . . . . 5  |-  ( x  =  .0.  ->  (
x ( .r `  R ) X )  =  (  .0.  ( .r `  R ) X ) )
76eqeq1d 2202 . . . 4  |-  ( x  =  .0.  ->  (
( x ( .r
`  R ) X )  =  .0.  <->  (  .0.  ( .r `  R ) X )  =  .0.  ) )
87rspcev 2864 . . 3  |-  ( (  .0.  e.  B  /\  (  .0.  ( .r `  R ) X )  =  .0.  )  ->  E. x  e.  B  ( x ( .r
`  R ) X )  =  .0.  )
93, 5, 8syl2an2r 595 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  E. x  e.  B  ( x
( .r `  R
) X )  =  .0.  )
101a1i 9 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  B  =  ( Base `  R
) )
11 dvdsr0.d . . . 4  |-  .||  =  (
||r `  R )
1211a1i 9 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  .||  =  (
||r `  R ) )
13 ringsrg 13543 . . . 4  |-  ( R  e.  Ring  ->  R  e. SRing
)
1413adantr 276 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  R  e. SRing )
15 eqidd 2194 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( .r `  R )  =  ( .r `  R
) )
16 simpr 110 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  e.  B )
1710, 12, 14, 15, 16dvdsr2d 13591 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .||  .0.  <->  E. x  e.  B  ( x
( .r `  R
) X )  =  .0.  ) )
189, 17mpbird 167 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  .|| 
.0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   Basecbs 12618   .rcmulr 12696   0gc0g 12867  SRingcsrg 13459   Ringcrg 13492   ||rcdsr 13582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-dvdsr 13585
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator