ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znunit Unicode version

Theorem znunit 14465
Description: The units of ℤ/nℤ are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y  |-  Y  =  (ℤ/n `  N )
znunit.u  |-  U  =  (Unit `  Y )
znunit.l  |-  L  =  ( ZRHom `  Y
)
Assertion
Ref Expression
znunit  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( A  gcd  N )  =  1 ) )

Proof of Theorem znunit
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znchr.y . . . . 5  |-  Y  =  (ℤ/n `  N )
21zncrng 14451 . . . 4  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
32adantr 276 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  Y  e.  CRing )
4 znunit.u . . . 4  |-  U  =  (Unit `  Y )
5 eqid 2206 . . . 4  |-  ( 1r
`  Y )  =  ( 1r `  Y
)
6 eqid 2206 . . . 4  |-  ( ||r `  Y
)  =  ( ||r `  Y
)
74, 5, 6crngunit 13917 . . 3  |-  ( Y  e.  CRing  ->  ( ( L `  A )  e.  U  <->  ( L `  A ) ( ||r `  Y
) ( 1r `  Y ) ) )
83, 7syl 14 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( L `  A ) ( ||r `
 Y ) ( 1r `  Y ) ) )
9 eqidd 2207 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( Base `  Y
)  =  ( Base `  Y ) )
10 eqidd 2207 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ||r `
 Y )  =  ( ||r `
 Y ) )
11 crngring 13814 . . . 4  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
12 ringsrg 13853 . . . 4  |-  ( Y  e.  Ring  ->  Y  e. SRing
)
133, 11, 123syl 17 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  Y  e. SRing )
14 eqidd 2207 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( .r `  Y
)  =  ( .r
`  Y ) )
15 eqid 2206 . . . . . . 7  |-  ( Base `  Y )  =  (
Base `  Y )
16 znunit.l . . . . . . 7  |-  L  =  ( ZRHom `  Y
)
171, 15, 16znzrhfo 14454 . . . . . 6  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Y
) )
1817adantr 276 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  L : ZZ -onto-> ( Base `  Y ) )
19 fof 5505 . . . . 5  |-  ( L : ZZ -onto-> ( Base `  Y )  ->  L : ZZ --> ( Base `  Y
) )
2018, 19syl 14 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  L : ZZ --> ( Base `  Y ) )
21 ffvelcdm 5720 . . . 4  |-  ( ( L : ZZ --> ( Base `  Y )  /\  A  e.  ZZ )  ->  ( L `  A )  e.  ( Base `  Y
) )
2220, 21sylancom 420 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( L `  A
)  e.  ( Base `  Y ) )
239, 10, 13, 14, 22dvdsr2d 13901 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A ) ( ||r `  Y
) ( 1r `  Y )  <->  E. x  e.  ( Base `  Y
) ( x ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y ) ) )
24 forn 5508 . . . . . 6  |-  ( L : ZZ -onto-> ( Base `  Y )  ->  ran  L  =  ( Base `  Y
) )
2518, 24syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ran  L  =  (
Base `  Y )
)
2625rexeqdv 2710 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e. 
ran  L ( x ( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
)  <->  E. x  e.  (
Base `  Y )
( x ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y ) ) )
27 ffn 5431 . . . . 5  |-  ( L : ZZ --> ( Base `  Y )  ->  L  Fn  ZZ )
28 oveq1 5958 . . . . . . 7  |-  ( x  =  ( L `  n )  ->  (
x ( .r `  Y ) ( L `
 A ) )  =  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) ) )
2928eqeq1d 2215 . . . . . 6  |-  ( x  =  ( L `  n )  ->  (
( x ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y )  <->  ( ( L `  n )
( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
) ) )
3029rexrn 5724 . . . . 5  |-  ( L  Fn  ZZ  ->  ( E. x  e.  ran  L ( x ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y )  <->  E. n  e.  ZZ  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y ) ) )
3120, 27, 303syl 17 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e. 
ran  L ( x ( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
)  <->  E. n  e.  ZZ  ( ( L `  n ) ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y ) ) )
3226, 31bitr3d 190 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e.  ( Base `  Y
) ( x ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y )  <->  E. n  e.  ZZ  ( ( L `  n ) ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y ) ) )
3316zrhrhm 14429 . . . . . . . . 9  |-  ( Y  e.  Ring  ->  L  e.  (ring RingHom  Y ) )
343, 11, 333syl 17 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  L  e.  (ring RingHom  Y ) )
3534adantr 276 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  L  e.  (ring RingHom  Y
) )
36 simpr 110 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  n  e.  ZZ )
37 simplr 528 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  A  e.  ZZ )
38 zringbas 14402 . . . . . . . 8  |-  ZZ  =  ( Base ` ring )
39 zringmulr 14405 . . . . . . . 8  |-  x.  =  ( .r ` ring )
40 eqid 2206 . . . . . . . 8  |-  ( .r
`  Y )  =  ( .r `  Y
)
4138, 39, 40rhmmul 13970 . . . . . . 7  |-  ( ( L  e.  (ring RingHom  Y )  /\  n  e.  ZZ  /\  A  e.  ZZ )  ->  ( L `  ( n  x.  A ) )  =  ( ( L `  n ) ( .r
`  Y ) ( L `  A ) ) )
4235, 36, 37, 41syl3anc 1250 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( L `  ( n  x.  A
) )  =  ( ( L `  n
) ( .r `  Y ) ( L `
 A ) ) )
433, 11syl 14 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  Y  e.  Ring )
4443adantr 276 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  Y  e.  Ring )
4516, 5zrh1 14430 . . . . . . 7  |-  ( Y  e.  Ring  ->  ( L `
 1 )  =  ( 1r `  Y
) )
4644, 45syl 14 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( L ` 
1 )  =  ( 1r `  Y ) )
4742, 46eqeq12d 2221 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( ( L `
 ( n  x.  A ) )  =  ( L `  1
)  <->  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y ) ) )
48 simpll 527 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  N  e.  NN0 )
4936, 37zmulcld 9508 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( n  x.  A )  e.  ZZ )
50 1zzd 9406 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  1  e.  ZZ )
511, 16zndvds 14455 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( n  x.  A
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( L `  ( n  x.  A
) )  =  ( L `  1 )  <-> 
N  ||  ( (
n  x.  A )  -  1 ) ) )
5248, 49, 50, 51syl3anc 1250 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( ( L `
 ( n  x.  A ) )  =  ( L `  1
)  <->  N  ||  ( ( n  x.  A )  -  1 ) ) )
5347, 52bitr3d 190 . . . 4  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( ( ( L `  n ) ( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
)  <->  N  ||  ( ( n  x.  A )  -  1 ) ) )
5453rexbidva 2504 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y )  <->  E. n  e.  ZZ  N  ||  ( ( n  x.  A )  - 
1 ) ) )
55 simplr 528 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  A  e.  ZZ )
56 nn0z 9399 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  N  e.  ZZ )
5756ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  N  e.  ZZ )
58 gcddvds 12328 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( A  gcd  N )  ||  A  /\  ( A  gcd  N ) 
||  N ) )
5955, 57, 58syl2anc 411 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  A  /\  ( A  gcd  N ) 
||  N ) )
6059simpld 112 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  A )
6155, 57gcdcld 12333 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  e.  NN0 )
6261nn0zd 9500 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  e.  ZZ )
6336adantrr 479 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  n  e.  ZZ )
64 dvdsmultr2 12188 . . . . . . . . 9  |-  ( ( ( A  gcd  N
)  e.  ZZ  /\  n  e.  ZZ  /\  A  e.  ZZ )  ->  (
( A  gcd  N
)  ||  A  ->  ( A  gcd  N ) 
||  ( n  x.  A ) ) )
6562, 63, 55, 64syl3anc 1250 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  A  -> 
( A  gcd  N
)  ||  ( n  x.  A ) ) )
6660, 65mpd 13 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  ( n  x.  A ) )
6749adantrr 479 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( n  x.  A
)  e.  ZZ )
68 1zzd 9406 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
1  e.  ZZ )
69 peano2zm 9417 . . . . . . . . . 10  |-  ( ( n  x.  A )  e.  ZZ  ->  (
( n  x.  A
)  -  1 )  e.  ZZ )
7067, 69syl 14 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( n  x.  A )  -  1 )  e.  ZZ )
7159simprd 114 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  N )
72 simprr 531 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  N  ||  ( ( n  x.  A )  - 
1 ) )
7362, 57, 70, 71, 72dvdstrd 12185 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  ( (
n  x.  A )  -  1 ) )
74 dvdssub2 12190 . . . . . . . 8  |-  ( ( ( ( A  gcd  N )  e.  ZZ  /\  ( n  x.  A
)  e.  ZZ  /\  1  e.  ZZ )  /\  ( A  gcd  N
)  ||  ( (
n  x.  A )  -  1 ) )  ->  ( ( A  gcd  N )  ||  ( n  x.  A
)  <->  ( A  gcd  N )  ||  1 ) )
7562, 67, 68, 73, 74syl31anc 1253 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  ( n  x.  A )  <->  ( A  gcd  N )  ||  1
) )
7666, 75mpbid 147 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  1 )
77 dvds1 12208 . . . . . . 7  |-  ( ( A  gcd  N )  e.  NN0  ->  ( ( A  gcd  N ) 
||  1  <->  ( A  gcd  N )  =  1 ) )
7861, 77syl 14 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  1  <->  ( A  gcd  N )  =  1 ) )
7976, 78mpbid 147 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  =  1 )
8079rexlimdvaa 2625 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  N  ||  (
( n  x.  A
)  -  1 )  ->  ( A  gcd  N )  =  1 ) )
81 simpr 110 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  A  e.  ZZ )
8256adantr 276 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  N  e.  ZZ )
83 bezout 12376 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  E. n  e.  ZZ  E. m  e.  ZZ  ( A  gcd  N )  =  ( ( A  x.  n )  +  ( N  x.  m ) ) )
8481, 82, 83syl2anc 411 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  E. n  e.  ZZ  E. m  e.  ZZ  ( A  gcd  N )  =  ( ( A  x.  n )  +  ( N  x.  m ) ) )
85 eqeq1 2213 . . . . . . 7  |-  ( ( A  gcd  N )  =  1  ->  (
( A  gcd  N
)  =  ( ( A  x.  n )  +  ( N  x.  m ) )  <->  1  =  ( ( A  x.  n )  +  ( N  x.  m ) ) ) )
86852rexbidv 2532 . . . . . 6  |-  ( ( A  gcd  N )  =  1  ->  ( E. n  e.  ZZ  E. m  e.  ZZ  ( A  gcd  N )  =  ( ( A  x.  n )  +  ( N  x.  m ) )  <->  E. n  e.  ZZ  E. m  e.  ZZ  1  =  ( ( A  x.  n )  +  ( N  x.  m
) ) ) )
8784, 86syl5ibcom 155 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( A  gcd  N )  =  1  ->  E. n  e.  ZZ  E. m  e.  ZZ  1  =  ( ( A  x.  n )  +  ( N  x.  m
) ) ) )
8856ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  e.  ZZ )
89 dvdsmul1 12168 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  N  ||  ( N  x.  m ) )
9088, 89sylancom 420 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  ||  ( N  x.  m
) )
91 zmulcl 9433 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  ( N  x.  m
)  e.  ZZ )
9288, 91sylancom 420 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( N  x.  m )  e.  ZZ )
93 dvdsnegb 12163 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( N  x.  m
)  e.  ZZ )  ->  ( N  ||  ( N  x.  m
)  <->  N  ||  -u ( N  x.  m )
) )
9488, 92, 93syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( N  ||  ( N  x.  m )  <->  N  ||  -u ( N  x.  m )
) )
9590, 94mpbid 147 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  ||  -u ( N  x.  m
) )
9637adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  A  e.  ZZ )
9796zcnd 9503 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  A  e.  CC )
98 zcn 9384 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  n  e.  CC )
9998ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  n  e.  CC )
10097, 99mulcomd 8101 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( A  x.  n )  =  ( n  x.  A ) )
101100oveq1d 5966 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( A  x.  n
)  +  ( N  x.  m ) )  =  ( ( n  x.  A )  +  ( N  x.  m
) ) )
10299, 97mulcld 8100 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
n  x.  A )  e.  CC )
10392zcnd 9503 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( N  x.  m )  e.  CC )
104102, 103subnegd 8397 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  -u ( N  x.  m )
)  =  ( ( n  x.  A )  +  ( N  x.  m ) ) )
105101, 104eqtr4d 2242 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( A  x.  n
)  +  ( N  x.  m ) )  =  ( ( n  x.  A )  -  -u ( N  x.  m
) ) )
106105oveq2d 5967 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  ( ( A  x.  n )  +  ( N  x.  m ) ) )  =  ( ( n  x.  A )  -  ( ( n  x.  A )  -  -u ( N  x.  m )
) ) )
107103negcld 8377 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  -u ( N  x.  m )  e.  CC )
108102, 107nncand 8395 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  ( ( n  x.  A )  -  -u ( N  x.  m ) ) )  =  -u ( N  x.  m ) )
109106, 108eqtrd 2239 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  ( ( A  x.  n )  +  ( N  x.  m ) ) )  =  -u ( N  x.  m ) )
11095, 109breqtrrd 4075 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  ||  ( ( n  x.  A )  -  (
( A  x.  n
)  +  ( N  x.  m ) ) ) )
111 oveq2 5959 . . . . . . . . 9  |-  ( 1  =  ( ( A  x.  n )  +  ( N  x.  m
) )  ->  (
( n  x.  A
)  -  1 )  =  ( ( n  x.  A )  -  ( ( A  x.  n )  +  ( N  x.  m ) ) ) )
112111breq2d 4059 . . . . . . . 8  |-  ( 1  =  ( ( A  x.  n )  +  ( N  x.  m
) )  ->  ( N  ||  ( ( n  x.  A )  - 
1 )  <->  N  ||  (
( n  x.  A
)  -  ( ( A  x.  n )  +  ( N  x.  m ) ) ) ) )
113110, 112syl5ibrcom 157 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
1  =  ( ( A  x.  n )  +  ( N  x.  m ) )  ->  N  ||  ( ( n  x.  A )  - 
1 ) ) )
114113rexlimdva 2624 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( E. m  e.  ZZ  1  =  ( ( A  x.  n
)  +  ( N  x.  m ) )  ->  N  ||  (
( n  x.  A
)  -  1 ) ) )
115114reximdva 2609 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  E. m  e.  ZZ  1  =  ( ( A  x.  n
)  +  ( N  x.  m ) )  ->  E. n  e.  ZZ  N  ||  ( ( n  x.  A )  - 
1 ) ) )
11687, 115syld 45 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( A  gcd  N )  =  1  ->  E. n  e.  ZZ  N  ||  ( ( n  x.  A )  - 
1 ) ) )
11780, 116impbid 129 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  N  ||  (
( n  x.  A
)  -  1 )  <-> 
( A  gcd  N
)  =  1 ) )
11832, 54, 1173bitrd 214 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e.  ( Base `  Y
) ( x ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y )  <-> 
( A  gcd  N
)  =  1 ) )
1198, 23, 1183bitrd 214 1  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( A  gcd  N )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   E.wrex 2486   class class class wbr 4047   ran crn 4680    Fn wfn 5271   -->wf 5272   -onto->wfo 5274   ` cfv 5276  (class class class)co 5951   CCcc 7930   1c1 7933    + caddc 7935    x. cmul 7937    - cmin 8250   -ucneg 8251   NN0cn0 9302   ZZcz 9379    || cdvds 12142    gcd cgcd 12318   Basecbs 12876   .rcmulr 12954   1rcur 13765  SRingcsrg 13769   Ringcrg 13802   CRingccrg 13803   ||rcdsr 13892  Unitcui 13893   RingHom crh 13956  ℤringczring 14396   ZRHomczrh 14417  ℤ/nczn 14419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052  ax-addf 8054  ax-mulf 8055
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-tpos 6338  df-recs 6398  df-frec 6484  df-er 6627  df-ec 6629  df-qs 6633  df-map 6744  df-sup 7093  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-dec 9512  df-uz 9656  df-q 9748  df-rp 9783  df-fz 10138  df-fzo 10272  df-fl 10420  df-mod 10475  df-seqfrec 10600  df-exp 10691  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-dvds 12143  df-gcd 12319  df-struct 12878  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-starv 12968  df-sca 12969  df-vsca 12970  df-ip 12971  df-tset 12972  df-ple 12973  df-ds 12975  df-unif 12976  df-0g 13134  df-topgen 13136  df-iimas 13178  df-qus 13179  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-mhm 13335  df-grp 13379  df-minusg 13380  df-sbg 13381  df-mulg 13500  df-subg 13550  df-nsg 13551  df-eqg 13552  df-ghm 13621  df-cmn 13666  df-abl 13667  df-mgp 13727  df-rng 13739  df-ur 13766  df-srg 13770  df-ring 13804  df-cring 13805  df-oppr 13874  df-dvdsr 13895  df-unit 13896  df-rhm 13958  df-subrg 14025  df-lmod 14095  df-lssm 14159  df-lsp 14193  df-sra 14241  df-rgmod 14242  df-lidl 14275  df-rsp 14276  df-2idl 14306  df-bl 14352  df-mopn 14353  df-fg 14355  df-metu 14356  df-cnfld 14363  df-zring 14397  df-zrh 14420  df-zn 14422
This theorem is referenced by:  znrrg  14466  lgseisenlem3  15593
  Copyright terms: Public domain W3C validator