ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  znunit Unicode version

Theorem znunit 14147
Description: The units of ℤ/nℤ are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y  |-  Y  =  (ℤ/n `  N )
znunit.u  |-  U  =  (Unit `  Y )
znunit.l  |-  L  =  ( ZRHom `  Y
)
Assertion
Ref Expression
znunit  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( A  gcd  N )  =  1 ) )

Proof of Theorem znunit
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znchr.y . . . . 5  |-  Y  =  (ℤ/n `  N )
21zncrng 14133 . . . 4  |-  ( N  e.  NN0  ->  Y  e. 
CRing )
32adantr 276 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  Y  e.  CRing )
4 znunit.u . . . 4  |-  U  =  (Unit `  Y )
5 eqid 2193 . . . 4  |-  ( 1r
`  Y )  =  ( 1r `  Y
)
6 eqid 2193 . . . 4  |-  ( ||r `  Y
)  =  ( ||r `  Y
)
74, 5, 6crngunit 13607 . . 3  |-  ( Y  e.  CRing  ->  ( ( L `  A )  e.  U  <->  ( L `  A ) ( ||r `  Y
) ( 1r `  Y ) ) )
83, 7syl 14 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( L `  A ) ( ||r `
 Y ) ( 1r `  Y ) ) )
9 eqidd 2194 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( Base `  Y
)  =  ( Base `  Y ) )
10 eqidd 2194 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ||r `
 Y )  =  ( ||r `
 Y ) )
11 crngring 13504 . . . 4  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
12 ringsrg 13543 . . . 4  |-  ( Y  e.  Ring  ->  Y  e. SRing
)
133, 11, 123syl 17 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  Y  e. SRing )
14 eqidd 2194 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( .r `  Y
)  =  ( .r
`  Y ) )
15 eqid 2193 . . . . . . 7  |-  ( Base `  Y )  =  (
Base `  Y )
16 znunit.l . . . . . . 7  |-  L  =  ( ZRHom `  Y
)
171, 15, 16znzrhfo 14136 . . . . . 6  |-  ( N  e.  NN0  ->  L : ZZ -onto-> ( Base `  Y
) )
1817adantr 276 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  L : ZZ -onto-> ( Base `  Y ) )
19 fof 5476 . . . . 5  |-  ( L : ZZ -onto-> ( Base `  Y )  ->  L : ZZ --> ( Base `  Y
) )
2018, 19syl 14 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  L : ZZ --> ( Base `  Y ) )
21 ffvelcdm 5691 . . . 4  |-  ( ( L : ZZ --> ( Base `  Y )  /\  A  e.  ZZ )  ->  ( L `  A )  e.  ( Base `  Y
) )
2220, 21sylancom 420 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( L `  A
)  e.  ( Base `  Y ) )
239, 10, 13, 14, 22dvdsr2d 13591 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A ) ( ||r `  Y
) ( 1r `  Y )  <->  E. x  e.  ( Base `  Y
) ( x ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y ) ) )
24 forn 5479 . . . . . 6  |-  ( L : ZZ -onto-> ( Base `  Y )  ->  ran  L  =  ( Base `  Y
) )
2518, 24syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ran  L  =  (
Base `  Y )
)
2625rexeqdv 2697 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e. 
ran  L ( x ( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
)  <->  E. x  e.  (
Base `  Y )
( x ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y ) ) )
27 ffn 5403 . . . . 5  |-  ( L : ZZ --> ( Base `  Y )  ->  L  Fn  ZZ )
28 oveq1 5925 . . . . . . 7  |-  ( x  =  ( L `  n )  ->  (
x ( .r `  Y ) ( L `
 A ) )  =  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) ) )
2928eqeq1d 2202 . . . . . 6  |-  ( x  =  ( L `  n )  ->  (
( x ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y )  <->  ( ( L `  n )
( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
) ) )
3029rexrn 5695 . . . . 5  |-  ( L  Fn  ZZ  ->  ( E. x  e.  ran  L ( x ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y )  <->  E. n  e.  ZZ  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y ) ) )
3120, 27, 303syl 17 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e. 
ran  L ( x ( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
)  <->  E. n  e.  ZZ  ( ( L `  n ) ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y ) ) )
3226, 31bitr3d 190 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e.  ( Base `  Y
) ( x ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y )  <->  E. n  e.  ZZ  ( ( L `  n ) ( .r
`  Y ) ( L `  A ) )  =  ( 1r
`  Y ) ) )
3316zrhrhm 14111 . . . . . . . . 9  |-  ( Y  e.  Ring  ->  L  e.  (ring RingHom  Y ) )
343, 11, 333syl 17 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  L  e.  (ring RingHom  Y ) )
3534adantr 276 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  L  e.  (ring RingHom  Y
) )
36 simpr 110 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  n  e.  ZZ )
37 simplr 528 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  A  e.  ZZ )
38 zringbas 14084 . . . . . . . 8  |-  ZZ  =  ( Base ` ring )
39 zringmulr 14087 . . . . . . . 8  |-  x.  =  ( .r ` ring )
40 eqid 2193 . . . . . . . 8  |-  ( .r
`  Y )  =  ( .r `  Y
)
4138, 39, 40rhmmul 13660 . . . . . . 7  |-  ( ( L  e.  (ring RingHom  Y )  /\  n  e.  ZZ  /\  A  e.  ZZ )  ->  ( L `  ( n  x.  A ) )  =  ( ( L `  n ) ( .r
`  Y ) ( L `  A ) ) )
4235, 36, 37, 41syl3anc 1249 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( L `  ( n  x.  A
) )  =  ( ( L `  n
) ( .r `  Y ) ( L `
 A ) ) )
433, 11syl 14 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  Y  e.  Ring )
4443adantr 276 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  Y  e.  Ring )
4516, 5zrh1 14112 . . . . . . 7  |-  ( Y  e.  Ring  ->  ( L `
 1 )  =  ( 1r `  Y
) )
4644, 45syl 14 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( L ` 
1 )  =  ( 1r `  Y ) )
4742, 46eqeq12d 2208 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( ( L `
 ( n  x.  A ) )  =  ( L `  1
)  <->  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y ) ) )
48 simpll 527 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  N  e.  NN0 )
4936, 37zmulcld 9445 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( n  x.  A )  e.  ZZ )
50 1zzd 9344 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  1  e.  ZZ )
511, 16zndvds 14137 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( n  x.  A
)  e.  ZZ  /\  1  e.  ZZ )  ->  ( ( L `  ( n  x.  A
) )  =  ( L `  1 )  <-> 
N  ||  ( (
n  x.  A )  -  1 ) ) )
5248, 49, 50, 51syl3anc 1249 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( ( L `
 ( n  x.  A ) )  =  ( L `  1
)  <->  N  ||  ( ( n  x.  A )  -  1 ) ) )
5347, 52bitr3d 190 . . . 4  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( ( ( L `  n ) ( .r `  Y
) ( L `  A ) )  =  ( 1r `  Y
)  <->  N  ||  ( ( n  x.  A )  -  1 ) ) )
5453rexbidva 2491 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  ( ( L `
 n ) ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y )  <->  E. n  e.  ZZ  N  ||  ( ( n  x.  A )  - 
1 ) ) )
55 simplr 528 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  A  e.  ZZ )
56 nn0z 9337 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  N  e.  ZZ )
5756ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  N  e.  ZZ )
58 gcddvds 12100 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( A  gcd  N )  ||  A  /\  ( A  gcd  N ) 
||  N ) )
5955, 57, 58syl2anc 411 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  A  /\  ( A  gcd  N ) 
||  N ) )
6059simpld 112 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  A )
6155, 57gcdcld 12105 . . . . . . . . . 10  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  e.  NN0 )
6261nn0zd 9437 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  e.  ZZ )
6336adantrr 479 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  n  e.  ZZ )
64 dvdsmultr2 11976 . . . . . . . . 9  |-  ( ( ( A  gcd  N
)  e.  ZZ  /\  n  e.  ZZ  /\  A  e.  ZZ )  ->  (
( A  gcd  N
)  ||  A  ->  ( A  gcd  N ) 
||  ( n  x.  A ) ) )
6562, 63, 55, 64syl3anc 1249 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  A  -> 
( A  gcd  N
)  ||  ( n  x.  A ) ) )
6660, 65mpd 13 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  ( n  x.  A ) )
6749adantrr 479 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( n  x.  A
)  e.  ZZ )
68 1zzd 9344 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
1  e.  ZZ )
69 peano2zm 9355 . . . . . . . . . 10  |-  ( ( n  x.  A )  e.  ZZ  ->  (
( n  x.  A
)  -  1 )  e.  ZZ )
7067, 69syl 14 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( n  x.  A )  -  1 )  e.  ZZ )
7159simprd 114 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  N )
72 simprr 531 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  ->  N  ||  ( ( n  x.  A )  - 
1 ) )
7362, 57, 70, 71, 72dvdstrd 11973 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  ( (
n  x.  A )  -  1 ) )
74 dvdssub2 11978 . . . . . . . 8  |-  ( ( ( ( A  gcd  N )  e.  ZZ  /\  ( n  x.  A
)  e.  ZZ  /\  1  e.  ZZ )  /\  ( A  gcd  N
)  ||  ( (
n  x.  A )  -  1 ) )  ->  ( ( A  gcd  N )  ||  ( n  x.  A
)  <->  ( A  gcd  N )  ||  1 ) )
7562, 67, 68, 73, 74syl31anc 1252 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  ( n  x.  A )  <->  ( A  gcd  N )  ||  1
) )
7666, 75mpbid 147 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  ||  1 )
77 dvds1 11995 . . . . . . 7  |-  ( ( A  gcd  N )  e.  NN0  ->  ( ( A  gcd  N ) 
||  1  <->  ( A  gcd  N )  =  1 ) )
7861, 77syl 14 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( ( A  gcd  N )  ||  1  <->  ( A  gcd  N )  =  1 ) )
7976, 78mpbid 147 . . . . 5  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  ( n  e.  ZZ  /\  N  ||  ( ( n  x.  A )  -  1 ) ) )  -> 
( A  gcd  N
)  =  1 )
8079rexlimdvaa 2612 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  N  ||  (
( n  x.  A
)  -  1 )  ->  ( A  gcd  N )  =  1 ) )
81 simpr 110 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  A  e.  ZZ )
8256adantr 276 . . . . . . 7  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  N  e.  ZZ )
83 bezout 12148 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  E. n  e.  ZZ  E. m  e.  ZZ  ( A  gcd  N )  =  ( ( A  x.  n )  +  ( N  x.  m ) ) )
8481, 82, 83syl2anc 411 . . . . . 6  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  E. n  e.  ZZ  E. m  e.  ZZ  ( A  gcd  N )  =  ( ( A  x.  n )  +  ( N  x.  m ) ) )
85 eqeq1 2200 . . . . . . 7  |-  ( ( A  gcd  N )  =  1  ->  (
( A  gcd  N
)  =  ( ( A  x.  n )  +  ( N  x.  m ) )  <->  1  =  ( ( A  x.  n )  +  ( N  x.  m ) ) ) )
86852rexbidv 2519 . . . . . 6  |-  ( ( A  gcd  N )  =  1  ->  ( E. n  e.  ZZ  E. m  e.  ZZ  ( A  gcd  N )  =  ( ( A  x.  n )  +  ( N  x.  m ) )  <->  E. n  e.  ZZ  E. m  e.  ZZ  1  =  ( ( A  x.  n )  +  ( N  x.  m
) ) ) )
8784, 86syl5ibcom 155 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( A  gcd  N )  =  1  ->  E. n  e.  ZZ  E. m  e.  ZZ  1  =  ( ( A  x.  n )  +  ( N  x.  m
) ) ) )
8856ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  e.  ZZ )
89 dvdsmul1 11956 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  N  ||  ( N  x.  m ) )
9088, 89sylancom 420 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  ||  ( N  x.  m
) )
91 zmulcl 9370 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  m  e.  ZZ )  ->  ( N  x.  m
)  e.  ZZ )
9288, 91sylancom 420 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( N  x.  m )  e.  ZZ )
93 dvdsnegb 11951 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( N  x.  m
)  e.  ZZ )  ->  ( N  ||  ( N  x.  m
)  <->  N  ||  -u ( N  x.  m )
) )
9488, 92, 93syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( N  ||  ( N  x.  m )  <->  N  ||  -u ( N  x.  m )
) )
9590, 94mpbid 147 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  ||  -u ( N  x.  m
) )
9637adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  A  e.  ZZ )
9796zcnd 9440 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  A  e.  CC )
98 zcn 9322 . . . . . . . . . . . . . . 15  |-  ( n  e.  ZZ  ->  n  e.  CC )
9998ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  n  e.  CC )
10097, 99mulcomd 8041 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( A  x.  n )  =  ( n  x.  A ) )
101100oveq1d 5933 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( A  x.  n
)  +  ( N  x.  m ) )  =  ( ( n  x.  A )  +  ( N  x.  m
) ) )
10299, 97mulcld 8040 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
n  x.  A )  e.  CC )
10392zcnd 9440 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  ( N  x.  m )  e.  CC )
104102, 103subnegd 8337 . . . . . . . . . . . 12  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  -u ( N  x.  m )
)  =  ( ( n  x.  A )  +  ( N  x.  m ) ) )
105101, 104eqtr4d 2229 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( A  x.  n
)  +  ( N  x.  m ) )  =  ( ( n  x.  A )  -  -u ( N  x.  m
) ) )
106105oveq2d 5934 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  ( ( A  x.  n )  +  ( N  x.  m ) ) )  =  ( ( n  x.  A )  -  ( ( n  x.  A )  -  -u ( N  x.  m )
) ) )
107103negcld 8317 . . . . . . . . . . 11  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  -u ( N  x.  m )  e.  CC )
108102, 107nncand 8335 . . . . . . . . . 10  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  ( ( n  x.  A )  -  -u ( N  x.  m ) ) )  =  -u ( N  x.  m ) )
109106, 108eqtrd 2226 . . . . . . . . 9  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
( n  x.  A
)  -  ( ( A  x.  n )  +  ( N  x.  m ) ) )  =  -u ( N  x.  m ) )
11095, 109breqtrrd 4057 . . . . . . . 8  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  N  ||  ( ( n  x.  A )  -  (
( A  x.  n
)  +  ( N  x.  m ) ) ) )
111 oveq2 5926 . . . . . . . . 9  |-  ( 1  =  ( ( A  x.  n )  +  ( N  x.  m
) )  ->  (
( n  x.  A
)  -  1 )  =  ( ( n  x.  A )  -  ( ( A  x.  n )  +  ( N  x.  m ) ) ) )
112111breq2d 4041 . . . . . . . 8  |-  ( 1  =  ( ( A  x.  n )  +  ( N  x.  m
) )  ->  ( N  ||  ( ( n  x.  A )  - 
1 )  <->  N  ||  (
( n  x.  A
)  -  ( ( A  x.  n )  +  ( N  x.  m ) ) ) ) )
113110, 112syl5ibrcom 157 . . . . . . 7  |-  ( ( ( ( N  e. 
NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  /\  m  e.  ZZ )  ->  (
1  =  ( ( A  x.  n )  +  ( N  x.  m ) )  ->  N  ||  ( ( n  x.  A )  - 
1 ) ) )
114113rexlimdva 2611 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  A  e.  ZZ )  /\  n  e.  ZZ )  ->  ( E. m  e.  ZZ  1  =  ( ( A  x.  n
)  +  ( N  x.  m ) )  ->  N  ||  (
( n  x.  A
)  -  1 ) ) )
115114reximdva 2596 . . . . 5  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  E. m  e.  ZZ  1  =  ( ( A  x.  n
)  +  ( N  x.  m ) )  ->  E. n  e.  ZZ  N  ||  ( ( n  x.  A )  - 
1 ) ) )
11687, 115syld 45 . . . 4  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( A  gcd  N )  =  1  ->  E. n  e.  ZZ  N  ||  ( ( n  x.  A )  - 
1 ) ) )
11780, 116impbid 129 . . 3  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. n  e.  ZZ  N  ||  (
( n  x.  A
)  -  1 )  <-> 
( A  gcd  N
)  =  1 ) )
11832, 54, 1173bitrd 214 . 2  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( E. x  e.  ( Base `  Y
) ( x ( .r `  Y ) ( L `  A
) )  =  ( 1r `  Y )  <-> 
( A  gcd  N
)  =  1 ) )
1198, 23, 1183bitrd 214 1  |-  ( ( N  e.  NN0  /\  A  e.  ZZ )  ->  ( ( L `  A )  e.  U  <->  ( A  gcd  N )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473   class class class wbr 4029   ran crn 4660    Fn wfn 5249   -->wf 5250   -onto->wfo 5252   ` cfv 5254  (class class class)co 5918   CCcc 7870   1c1 7873    + caddc 7875    x. cmul 7877    - cmin 8190   -ucneg 8191   NN0cn0 9240   ZZcz 9317    || cdvds 11930    gcd cgcd 12079   Basecbs 12618   .rcmulr 12696   1rcur 13455  SRingcsrg 13459   Ringcrg 13492   CRingccrg 13493   ||rcdsr 13582  Unitcui 13583   RingHom crh 13646  ℤringczring 14078   ZRHomczrh 14099  ℤ/nczn 14101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-tpos 6298  df-recs 6358  df-frec 6444  df-er 6587  df-ec 6589  df-qs 6593  df-map 6704  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-dec 9449  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-struct 12620  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-starv 12710  df-sca 12711  df-vsca 12712  df-ip 12713  df-ple 12715  df-0g 12869  df-iimas 12885  df-qus 12886  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-grp 13075  df-minusg 13076  df-sbg 13077  df-mulg 13190  df-subg 13240  df-nsg 13241  df-eqg 13242  df-ghm 13311  df-cmn 13356  df-abl 13357  df-mgp 13417  df-rng 13429  df-ur 13456  df-srg 13460  df-ring 13494  df-cring 13495  df-oppr 13564  df-dvdsr 13585  df-unit 13586  df-rhm 13648  df-subrg 13715  df-lmod 13785  df-lssm 13849  df-lsp 13883  df-sra 13931  df-rgmod 13932  df-lidl 13965  df-rsp 13966  df-2idl 13996  df-icnfld 14048  df-zring 14079  df-zrh 14102  df-zn 14104
This theorem is referenced by:  znrrg  14148  lgseisenlem3  15188
  Copyright terms: Public domain W3C validator