ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsubcl Unicode version

Theorem zsubcl 9358
Description: Closure of subtraction of integers. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
zsubcl  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N
)  e.  ZZ )

Proof of Theorem zsubcl
StepHypRef Expression
1 zcn 9322 . . 3  |-  ( M  e.  ZZ  ->  M  e.  CC )
2 zcn 9322 . . 3  |-  ( N  e.  ZZ  ->  N  e.  CC )
3 negsub 8267 . . 3  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M  +  -u N )  =  ( M  -  N ) )
41, 2, 3syl2an 289 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  -u N )  =  ( M  -  N ) )
5 znegcl 9348 . . 3  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
6 zaddcl 9357 . . 3  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M  +  -u N )  e.  ZZ )
75, 6sylan2 286 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  -u N )  e.  ZZ )
84, 7eqeltrrd 2271 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164  (class class class)co 5918   CCcc 7870    + caddc 7875    - cmin 8190   -ucneg 8191   ZZcz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318
This theorem is referenced by:  ztri3or  9360  zrevaddcl  9367  znnsub  9368  nzadd  9369  znn0sub  9382  zneo  9418  zsubcld  9444  eluzsubi  9620  fzen  10109  uzsubsubfz  10113  fzrev  10150  fzrev2  10151  fzrevral2  10172  fzshftral  10174  fz0fzdiffz0  10196  difelfzle  10200  difelfznle  10201  elfzomelpfzo  10298  zmodcl  10415  frecfzen2  10498  facndiv  10810  bccmpl  10825  bcpasc  10837  hashfz  10892  moddvds  11942  modmulconst  11966  dvds2sub  11969  dvdssub2  11978  dvdssubr  11982  fzocongeq  12000  odd2np1  12014  omoe  12037  omeo  12039  divalgb  12066  divalgmod  12068  ndvdsadd  12072  nn0seqcvgd  12179  congr  12238  cncongr1  12241  cncongr2  12242  prmdiv  12373  prmdiveq  12374  pythagtriplem4  12406  pythagtriplem8  12410  difsqpwdvds  12476  gausslemma2dlem6  15183  lgsquadlem1  15191
  Copyright terms: Public domain W3C validator