ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsubcl Unicode version

Theorem zsubcl 9088
Description: Closure of subtraction of integers. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
zsubcl  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N
)  e.  ZZ )

Proof of Theorem zsubcl
StepHypRef Expression
1 zcn 9052 . . 3  |-  ( M  e.  ZZ  ->  M  e.  CC )
2 zcn 9052 . . 3  |-  ( N  e.  ZZ  ->  N  e.  CC )
3 negsub 8003 . . 3  |-  ( ( M  e.  CC  /\  N  e.  CC )  ->  ( M  +  -u N )  =  ( M  -  N ) )
41, 2, 3syl2an 287 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  -u N )  =  ( M  -  N ) )
5 znegcl 9078 . . 3  |-  ( N  e.  ZZ  ->  -u N  e.  ZZ )
6 zaddcl 9087 . . 3  |-  ( ( M  e.  ZZ  /\  -u N  e.  ZZ )  ->  ( M  +  -u N )  e.  ZZ )
75, 6sylan2 284 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  -u N )  e.  ZZ )
84, 7eqeltrrd 2215 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  -  N
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480  (class class class)co 5767   CCcc 7611    + caddc 7616    - cmin 7926   -ucneg 7927   ZZcz 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048
This theorem is referenced by:  ztri3or  9090  zrevaddcl  9097  znnsub  9098  nzadd  9099  znn0sub  9112  zneo  9145  zsubcld  9171  eluzsubi  9346  fzen  9816  uzsubsubfz  9820  fzrev  9857  fzrev2  9858  fzrevral2  9879  fzshftral  9881  fz0fzdiffz0  9900  difelfzle  9904  difelfznle  9905  elfzomelpfzo  10001  zmodcl  10110  frecfzen2  10193  facndiv  10478  bccmpl  10493  bcpasc  10505  hashfz  10560  moddvds  11491  modmulconst  11514  dvds2sub  11517  dvdssub2  11524  dvdssubr  11528  fzocongeq  11545  odd2np1  11559  omoe  11582  omeo  11584  divalgb  11611  divalgmod  11613  ndvdsadd  11617  nn0seqcvgd  11711  congr  11770  cncongr1  11773  cncongr2  11774
  Copyright terms: Public domain W3C validator