| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zsubcl | Unicode version | ||
| Description: Closure of subtraction of integers. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| zsubcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9451 |
. . 3
| |
| 2 | zcn 9451 |
. . 3
| |
| 3 | negsub 8394 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
|
| 5 | znegcl 9477 |
. . 3
| |
| 6 | zaddcl 9486 |
. . 3
| |
| 7 | 5, 6 | sylan2 286 |
. 2
|
| 8 | 4, 7 | eqeltrrd 2307 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 |
| This theorem is referenced by: ztri3or 9489 zrevaddcl 9497 znnsub 9498 nzadd 9499 znn0sub 9512 zneo 9548 zsubcld 9574 eluzsubi 9750 fzen 10239 uzsubsubfz 10243 fzrev 10280 fzrev2 10281 fzrevral2 10302 fzshftral 10304 fz0fzdiffz0 10326 difelfzle 10330 difelfznle 10331 fzo0n 10364 elfzomelpfzo 10437 zmodcl 10566 frecfzen2 10649 facndiv 10961 bccmpl 10976 bcpasc 10988 hashfz 11043 swrdspsleq 11199 pfxccatin12lem4 11258 pfxccatin12lem2a 11259 pfxccatin12lem1 11260 pfxccatin12lem2 11263 swrdccat 11267 moddvds 12310 modmulconst 12334 dvds2sub 12337 dvdssub2 12346 dvdssubr 12350 fzocongeq 12369 3dvds 12375 odd2np1 12384 omoe 12407 omeo 12409 divalgb 12436 divalgmod 12438 ndvdsadd 12442 nn0seqcvgd 12563 congr 12622 cncongr1 12625 cncongr2 12626 prmdiv 12757 prmdiveq 12758 pythagtriplem4 12791 pythagtriplem8 12795 difsqpwdvds 12861 gausslemma2dlem6 15746 lgsquadlem1 15756 |
| Copyright terms: Public domain | W3C validator |