Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zsubcl | Unicode version |
Description: Closure of subtraction of integers. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
zsubcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 9192 | . . 3 | |
2 | zcn 9192 | . . 3 | |
3 | negsub 8142 | . . 3 | |
4 | 1, 2, 3 | syl2an 287 | . 2 |
5 | znegcl 9218 | . . 3 | |
6 | zaddcl 9227 | . . 3 | |
7 | 5, 6 | sylan2 284 | . 2 |
8 | 4, 7 | eqeltrrd 2243 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 (class class class)co 5841 cc 7747 caddc 7752 cmin 8065 cneg 8066 cz 9187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 |
This theorem is referenced by: ztri3or 9230 zrevaddcl 9237 znnsub 9238 nzadd 9239 znn0sub 9252 zneo 9288 zsubcld 9314 eluzsubi 9489 fzen 9974 uzsubsubfz 9978 fzrev 10015 fzrev2 10016 fzrevral2 10037 fzshftral 10039 fz0fzdiffz0 10061 difelfzle 10065 difelfznle 10066 elfzomelpfzo 10162 zmodcl 10275 frecfzen2 10358 facndiv 10648 bccmpl 10663 bcpasc 10675 hashfz 10730 moddvds 11735 modmulconst 11759 dvds2sub 11762 dvdssub2 11771 dvdssubr 11775 fzocongeq 11792 odd2np1 11806 omoe 11829 omeo 11831 divalgb 11858 divalgmod 11860 ndvdsadd 11864 nn0seqcvgd 11969 congr 12028 cncongr1 12031 cncongr2 12032 prmdiv 12163 prmdiveq 12164 pythagtriplem4 12196 pythagtriplem8 12200 difsqpwdvds 12265 |
Copyright terms: Public domain | W3C validator |