ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem16 Unicode version

Theorem 4sqlem16 12544
Description: Lemma for 4sq 12548. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sqlem11.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
4sq.2  |-  ( ph  ->  N  e.  NN )
4sq.3  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
4sq.4  |-  ( ph  ->  P  e.  Prime )
4sq.5  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
4sq.6  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
4sq.7  |-  M  = inf ( T ,  RR ,  <  )
4sq.m  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
4sq.a  |-  ( ph  ->  A  e.  ZZ )
4sq.b  |-  ( ph  ->  B  e.  ZZ )
4sq.c  |-  ( ph  ->  C  e.  ZZ )
4sq.d  |-  ( ph  ->  D  e.  ZZ )
4sq.e  |-  E  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.f  |-  F  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.g  |-  G  =  ( ( ( C  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.h  |-  H  =  ( ( ( D  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sq.r  |-  R  =  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)
4sq.p  |-  ( ph  ->  ( M  x.  P
)  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
Assertion
Ref Expression
4sqlem16  |-  ( ph  ->  ( R  <_  M  /\  ( ( R  =  0  \/  R  =  M )  ->  ( M ^ 2 )  ||  ( M  x.  P
) ) ) )
Distinct variable groups:    n, N    P, i, n, w, x, y, z    S, i, n    T, i    ph, i, n
Allowed substitution hints:    ph( x, y, z, w)    A( x, y, z, w, i, n)    B( x, y, z, w, i, n)    C( x, y, z, w, i, n)    D( x, y, z, w, i, n)    R( x, y, z, w, i, n)    S( x, y, z, w)    T( x, y, z, w, n)    E( x, y, z, w, i, n)    F( x, y, z, w, i, n)    G( x, y, z, w, i, n)    H( x, y, z, w, i, n)    M( x, y, z, w, i, n)    N( x, y, z, w, i)

Proof of Theorem 4sqlem16
StepHypRef Expression
1 4sq.r . . 3  |-  R  =  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)
2 4sq.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  ZZ )
3 4sq.m . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ( ZZ>= ` 
2 ) )
4 eluz2nn 9631 . . . . . . . . . . . . 13  |-  ( M  e.  ( ZZ>= `  2
)  ->  M  e.  NN )
53, 4syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  NN )
6 4sq.e . . . . . . . . . . . 12  |-  E  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
72, 5, 64sqlem5 12520 . . . . . . . . . . 11  |-  ( ph  ->  ( E  e.  ZZ  /\  ( ( A  -  E )  /  M
)  e.  ZZ ) )
87simpld 112 . . . . . . . . . 10  |-  ( ph  ->  E  e.  ZZ )
9 zsqcl 10681 . . . . . . . . . 10  |-  ( E  e.  ZZ  ->  ( E ^ 2 )  e.  ZZ )
108, 9syl 14 . . . . . . . . 9  |-  ( ph  ->  ( E ^ 2 )  e.  ZZ )
1110zred 9439 . . . . . . . 8  |-  ( ph  ->  ( E ^ 2 )  e.  RR )
12 4sq.b . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  ZZ )
13 4sq.f . . . . . . . . . . . 12  |-  F  =  ( ( ( B  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
1412, 5, 134sqlem5 12520 . . . . . . . . . . 11  |-  ( ph  ->  ( F  e.  ZZ  /\  ( ( B  -  F )  /  M
)  e.  ZZ ) )
1514simpld 112 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ZZ )
16 zsqcl 10681 . . . . . . . . . 10  |-  ( F  e.  ZZ  ->  ( F ^ 2 )  e.  ZZ )
1715, 16syl 14 . . . . . . . . 9  |-  ( ph  ->  ( F ^ 2 )  e.  ZZ )
1817zred 9439 . . . . . . . 8  |-  ( ph  ->  ( F ^ 2 )  e.  RR )
1911, 18readdcld 8049 . . . . . . 7  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  RR )
20 4sq.c . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  ZZ )
21 4sq.g . . . . . . . . . . . 12  |-  G  =  ( ( ( C  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2220, 5, 214sqlem5 12520 . . . . . . . . . . 11  |-  ( ph  ->  ( G  e.  ZZ  /\  ( ( C  -  G )  /  M
)  e.  ZZ ) )
2322simpld 112 . . . . . . . . . 10  |-  ( ph  ->  G  e.  ZZ )
24 zsqcl 10681 . . . . . . . . . 10  |-  ( G  e.  ZZ  ->  ( G ^ 2 )  e.  ZZ )
2523, 24syl 14 . . . . . . . . 9  |-  ( ph  ->  ( G ^ 2 )  e.  ZZ )
2625zred 9439 . . . . . . . 8  |-  ( ph  ->  ( G ^ 2 )  e.  RR )
27 4sq.d . . . . . . . . . . . 12  |-  ( ph  ->  D  e.  ZZ )
28 4sq.h . . . . . . . . . . . 12  |-  H  =  ( ( ( D  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
2927, 5, 284sqlem5 12520 . . . . . . . . . . 11  |-  ( ph  ->  ( H  e.  ZZ  /\  ( ( D  -  H )  /  M
)  e.  ZZ ) )
3029simpld 112 . . . . . . . . . 10  |-  ( ph  ->  H  e.  ZZ )
31 zsqcl 10681 . . . . . . . . . 10  |-  ( H  e.  ZZ  ->  ( H ^ 2 )  e.  ZZ )
3230, 31syl 14 . . . . . . . . 9  |-  ( ph  ->  ( H ^ 2 )  e.  ZZ )
3332zred 9439 . . . . . . . 8  |-  ( ph  ->  ( H ^ 2 )  e.  RR )
3426, 33readdcld 8049 . . . . . . 7  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  e.  RR )
355nnred 8995 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
3635resqcld 10770 . . . . . . . 8  |-  ( ph  ->  ( M ^ 2 )  e.  RR )
3736rehalfcld 9229 . . . . . . 7  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  e.  RR )
3837rehalfcld 9229 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  e.  RR )
392, 5, 64sqlem7 12522 . . . . . . . . 9  |-  ( ph  ->  ( E ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
4012, 5, 134sqlem7 12522 . . . . . . . . 9  |-  ( ph  ->  ( F ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
4111, 18, 38, 38, 39, 40le2addd 8582 . . . . . . . 8  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  +  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
4237recnd 8048 . . . . . . . . 9  |-  ( ph  ->  ( ( M ^
2 )  /  2
)  e.  CC )
43422halvesd 9228 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  +  ( ( ( M ^
2 )  /  2
)  /  2 ) )  =  ( ( M ^ 2 )  /  2 ) )
4441, 43breqtrd 4055 . . . . . . 7  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) )
4520, 5, 214sqlem7 12522 . . . . . . . . 9  |-  ( ph  ->  ( G ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
4627, 5, 284sqlem7 12522 . . . . . . . . 9  |-  ( ph  ->  ( H ^ 2 )  <_  ( (
( M ^ 2 )  /  2 )  /  2 ) )
4726, 33, 38, 38, 45, 46le2addd 8582 . . . . . . . 8  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  <_  ( (
( ( M ^
2 )  /  2
)  /  2 )  +  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
4847, 43breqtrd 4055 . . . . . . 7  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  <_  ( ( M ^ 2 )  / 
2 ) )
4919, 34, 37, 37, 44, 48le2addd 8582 . . . . . 6  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  <_  ( (
( M ^ 2 )  /  2 )  +  ( ( M ^ 2 )  / 
2 ) ) )
5036recnd 8048 . . . . . . 7  |-  ( ph  ->  ( M ^ 2 )  e.  CC )
51502halvesd 9228 . . . . . 6  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  +  ( ( M ^ 2 )  /  2 ) )  =  ( M ^ 2 ) )
5249, 51breqtrd 4055 . . . . 5  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  <_  ( M ^ 2 ) )
5335recnd 8048 . . . . . 6  |-  ( ph  ->  M  e.  CC )
5453sqvald 10741 . . . . 5  |-  ( ph  ->  ( M ^ 2 )  =  ( M  x.  M ) )
5552, 54breqtrd 4055 . . . 4  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  <_  ( M  x.  M ) )
5619, 34readdcld 8049 . . . . 5  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  RR )
575nngt0d 9026 . . . . 5  |-  ( ph  ->  0  <  M )
58 ledivmul 8896 . . . . 5  |-  ( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  RR  /\  M  e.  RR  /\  ( M  e.  RR  /\  0  <  M ) )  -> 
( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  /  M )  <_  M  <->  ( ( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  <_  ( M  x.  M ) ) )
5956, 35, 35, 57, 58syl112anc 1253 . . . 4  |-  ( ph  ->  ( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  /  M )  <_  M  <->  ( ( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  <_  ( M  x.  M ) ) )
6055, 59mpbird 167 . . 3  |-  ( ph  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  /  M
)  <_  M )
611, 60eqbrtrid 4064 . 2  |-  ( ph  ->  R  <_  M )
62 simpr 110 . . . . . . . . . . . . 13  |-  ( (
ph  /\  R  = 
0 )  ->  R  =  0 )
631, 62eqtr3id 2240 . . . . . . . . . . . 12  |-  ( (
ph  /\  R  = 
0 )  ->  (
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  /  M )  =  0 )
6456recnd 8048 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  e.  CC )
655nnap0d 9028 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M #  0 )
6664, 53, 65diveqap0ad 8819 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  /  M )  =  0  <-> 
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  =  0 ) )
67 zsqcl2 10688 . . . . . . . . . . . . . . . . . 18  |-  ( E  e.  ZZ  ->  ( E ^ 2 )  e. 
NN0 )
688, 67syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( E ^ 2 )  e.  NN0 )
69 zsqcl2 10688 . . . . . . . . . . . . . . . . . 18  |-  ( F  e.  ZZ  ->  ( F ^ 2 )  e. 
NN0 )
7015, 69syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( F ^ 2 )  e.  NN0 )
7168, 70nn0addcld 9297 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( E ^
2 )  +  ( F ^ 2 ) )  e.  NN0 )
7271nn0ge0d 9296 . . . . . . . . . . . . . . 15  |-  ( ph  ->  0  <_  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )
73 zsqcl2 10688 . . . . . . . . . . . . . . . . . 18  |-  ( G  e.  ZZ  ->  ( G ^ 2 )  e. 
NN0 )
7423, 73syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( G ^ 2 )  e.  NN0 )
75 zsqcl2 10688 . . . . . . . . . . . . . . . . . 18  |-  ( H  e.  ZZ  ->  ( H ^ 2 )  e. 
NN0 )
7630, 75syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( H ^ 2 )  e.  NN0 )
7774, 76nn0addcld 9297 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( G ^
2 )  +  ( H ^ 2 ) )  e.  NN0 )
7877nn0ge0d 9296 . . . . . . . . . . . . . . 15  |-  ( ph  ->  0  <_  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )
79 add20 8493 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  e.  RR  /\  0  <_  ( ( E ^ 2 )  +  ( F ^ 2 ) ) )  /\  ( ( ( G ^ 2 )  +  ( H ^ 2 ) )  e.  RR  /\  0  <_  ( ( G ^ 2 )  +  ( H ^ 2 ) ) ) )  ->  ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  =  0  <->  ( ( ( E ^ 2 )  +  ( F ^
2 ) )  =  0  /\  ( ( G ^ 2 )  +  ( H ^
2 ) )  =  0 ) ) )
8019, 72, 34, 78, 79syl22anc 1250 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( E ^ 2 )  +  ( F ^
2 ) )  +  ( ( G ^
2 )  +  ( H ^ 2 ) ) )  =  0  <-> 
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  0  /\  ( ( G ^ 2 )  +  ( H ^ 2 ) )  =  0 ) ) )
8166, 80bitrd 188 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^ 2 ) ) )  /  M )  =  0  <-> 
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  0  /\  ( ( G ^ 2 )  +  ( H ^ 2 ) )  =  0 ) ) )
8281biimpa 296 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
( ( E ^
2 )  +  ( F ^ 2 ) )  +  ( ( G ^ 2 )  +  ( H ^
2 ) ) )  /  M )  =  0 )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  =  0  /\  ( ( G ^
2 )  +  ( H ^ 2 ) )  =  0 ) )
8363, 82syldan 282 . . . . . . . . . . 11  |-  ( (
ph  /\  R  = 
0 )  ->  (
( ( E ^
2 )  +  ( F ^ 2 ) )  =  0  /\  ( ( G ^
2 )  +  ( H ^ 2 ) )  =  0 ) )
8483simpld 112 . . . . . . . . . 10  |-  ( (
ph  /\  R  = 
0 )  ->  (
( E ^ 2 )  +  ( F ^ 2 ) )  =  0 )
8568nn0ge0d 9296 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( E ^ 2 ) )
8670nn0ge0d 9296 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( F ^ 2 ) )
87 add20 8493 . . . . . . . . . . . 12  |-  ( ( ( ( E ^
2 )  e.  RR  /\  0  <_  ( E ^ 2 ) )  /\  ( ( F ^ 2 )  e.  RR  /\  0  <_ 
( F ^ 2 ) ) )  -> 
( ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  0  <-> 
( ( E ^
2 )  =  0  /\  ( F ^
2 )  =  0 ) ) )
8811, 85, 18, 86, 87syl22anc 1250 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  0  <-> 
( ( E ^
2 )  =  0  /\  ( F ^
2 )  =  0 ) ) )
8988biimpa 296 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( E ^ 2 )  +  ( F ^ 2 ) )  =  0 )  ->  ( ( E ^ 2 )  =  0  /\  ( F ^ 2 )  =  0 ) )
9084, 89syldan 282 . . . . . . . . 9  |-  ( (
ph  /\  R  = 
0 )  ->  (
( E ^ 2 )  =  0  /\  ( F ^ 2 )  =  0 ) )
9190simpld 112 . . . . . . . 8  |-  ( (
ph  /\  R  = 
0 )  ->  ( E ^ 2 )  =  0 )
922, 5, 6, 914sqlem9 12524 . . . . . . 7  |-  ( (
ph  /\  R  = 
0 )  ->  ( M ^ 2 )  ||  ( A ^ 2 ) )
9390simprd 114 . . . . . . . 8  |-  ( (
ph  /\  R  = 
0 )  ->  ( F ^ 2 )  =  0 )
9412, 5, 13, 934sqlem9 12524 . . . . . . 7  |-  ( (
ph  /\  R  = 
0 )  ->  ( M ^ 2 )  ||  ( B ^ 2 ) )
955nnsqcld 10765 . . . . . . . . . 10  |-  ( ph  ->  ( M ^ 2 )  e.  NN )
9695nnzd 9438 . . . . . . . . 9  |-  ( ph  ->  ( M ^ 2 )  e.  ZZ )
97 zsqcl 10681 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e.  ZZ )
982, 97syl 14 . . . . . . . . 9  |-  ( ph  ->  ( A ^ 2 )  e.  ZZ )
99 zsqcl 10681 . . . . . . . . . 10  |-  ( B  e.  ZZ  ->  ( B ^ 2 )  e.  ZZ )
10012, 99syl 14 . . . . . . . . 9  |-  ( ph  ->  ( B ^ 2 )  e.  ZZ )
101 dvds2add 11968 . . . . . . . . 9  |-  ( ( ( M ^ 2 )  e.  ZZ  /\  ( A ^ 2 )  e.  ZZ  /\  ( B ^ 2 )  e.  ZZ )  ->  (
( ( M ^
2 )  ||  ( A ^ 2 )  /\  ( M ^ 2 ) 
||  ( B ^
2 ) )  -> 
( M ^ 2 )  ||  ( ( A ^ 2 )  +  ( B ^
2 ) ) ) )
10296, 98, 100, 101syl3anc 1249 . . . . . . . 8  |-  ( ph  ->  ( ( ( M ^ 2 )  ||  ( A ^ 2 )  /\  ( M ^
2 )  ||  ( B ^ 2 ) )  ->  ( M ^
2 )  ||  (
( A ^ 2 )  +  ( B ^ 2 ) ) ) )
103102adantr 276 . . . . . . 7  |-  ( (
ph  /\  R  = 
0 )  ->  (
( ( M ^
2 )  ||  ( A ^ 2 )  /\  ( M ^ 2 ) 
||  ( B ^
2 ) )  -> 
( M ^ 2 )  ||  ( ( A ^ 2 )  +  ( B ^
2 ) ) ) )
10492, 94, 103mp2and 433 . . . . . 6  |-  ( (
ph  /\  R  = 
0 )  ->  ( M ^ 2 )  ||  ( ( A ^
2 )  +  ( B ^ 2 ) ) )
10583simprd 114 . . . . . . . . . 10  |-  ( (
ph  /\  R  = 
0 )  ->  (
( G ^ 2 )  +  ( H ^ 2 ) )  =  0 )
10674nn0ge0d 9296 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( G ^ 2 ) )
10776nn0ge0d 9296 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( H ^ 2 ) )
108 add20 8493 . . . . . . . . . . . 12  |-  ( ( ( ( G ^
2 )  e.  RR  /\  0  <_  ( G ^ 2 ) )  /\  ( ( H ^ 2 )  e.  RR  /\  0  <_ 
( H ^ 2 ) ) )  -> 
( ( ( G ^ 2 )  +  ( H ^ 2 ) )  =  0  <-> 
( ( G ^
2 )  =  0  /\  ( H ^
2 )  =  0 ) ) )
10926, 106, 33, 107, 108syl22anc 1250 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( G ^ 2 )  +  ( H ^ 2 ) )  =  0  <-> 
( ( G ^
2 )  =  0  /\  ( H ^
2 )  =  0 ) ) )
110109biimpa 296 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( G ^ 2 )  +  ( H ^ 2 ) )  =  0 )  ->  ( ( G ^ 2 )  =  0  /\  ( H ^ 2 )  =  0 ) )
111105, 110syldan 282 . . . . . . . . 9  |-  ( (
ph  /\  R  = 
0 )  ->  (
( G ^ 2 )  =  0  /\  ( H ^ 2 )  =  0 ) )
112111simpld 112 . . . . . . . 8  |-  ( (
ph  /\  R  = 
0 )  ->  ( G ^ 2 )  =  0 )
11320, 5, 21, 1124sqlem9 12524 . . . . . . 7  |-  ( (
ph  /\  R  = 
0 )  ->  ( M ^ 2 )  ||  ( C ^ 2 ) )
114111simprd 114 . . . . . . . 8  |-  ( (
ph  /\  R  = 
0 )  ->  ( H ^ 2 )  =  0 )
11527, 5, 28, 1144sqlem9 12524 . . . . . . 7  |-  ( (
ph  /\  R  = 
0 )  ->  ( M ^ 2 )  ||  ( D ^ 2 ) )
116 zsqcl 10681 . . . . . . . . . 10  |-  ( C  e.  ZZ  ->  ( C ^ 2 )  e.  ZZ )
11720, 116syl 14 . . . . . . . . 9  |-  ( ph  ->  ( C ^ 2 )  e.  ZZ )
118 zsqcl 10681 . . . . . . . . . 10  |-  ( D  e.  ZZ  ->  ( D ^ 2 )  e.  ZZ )
11927, 118syl 14 . . . . . . . . 9  |-  ( ph  ->  ( D ^ 2 )  e.  ZZ )
120 dvds2add 11968 . . . . . . . . 9  |-  ( ( ( M ^ 2 )  e.  ZZ  /\  ( C ^ 2 )  e.  ZZ  /\  ( D ^ 2 )  e.  ZZ )  ->  (
( ( M ^
2 )  ||  ( C ^ 2 )  /\  ( M ^ 2 ) 
||  ( D ^
2 ) )  -> 
( M ^ 2 )  ||  ( ( C ^ 2 )  +  ( D ^
2 ) ) ) )
12196, 117, 119, 120syl3anc 1249 . . . . . . . 8  |-  ( ph  ->  ( ( ( M ^ 2 )  ||  ( C ^ 2 )  /\  ( M ^
2 )  ||  ( D ^ 2 ) )  ->  ( M ^
2 )  ||  (
( C ^ 2 )  +  ( D ^ 2 ) ) ) )
122121adantr 276 . . . . . . 7  |-  ( (
ph  /\  R  = 
0 )  ->  (
( ( M ^
2 )  ||  ( C ^ 2 )  /\  ( M ^ 2 ) 
||  ( D ^
2 ) )  -> 
( M ^ 2 )  ||  ( ( C ^ 2 )  +  ( D ^
2 ) ) ) )
123113, 115, 122mp2and 433 . . . . . 6  |-  ( (
ph  /\  R  = 
0 )  ->  ( M ^ 2 )  ||  ( ( C ^
2 )  +  ( D ^ 2 ) ) )
12498, 100zaddcld 9443 . . . . . . . 8  |-  ( ph  ->  ( ( A ^
2 )  +  ( B ^ 2 ) )  e.  ZZ )
125117, 119zaddcld 9443 . . . . . . . 8  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  ZZ )
126 dvds2add 11968 . . . . . . . 8  |-  ( ( ( M ^ 2 )  e.  ZZ  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  e.  ZZ  /\  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  ZZ )  ->  ( ( ( M ^ 2 ) 
||  ( ( A ^ 2 )  +  ( B ^ 2 ) )  /\  ( M ^ 2 )  ||  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  ->  ( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) ) )
12796, 124, 125, 126syl3anc 1249 . . . . . . 7  |-  ( ph  ->  ( ( ( M ^ 2 )  ||  ( ( A ^
2 )  +  ( B ^ 2 ) )  /\  ( M ^ 2 )  ||  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  ->  ( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) ) )
128127adantr 276 . . . . . 6  |-  ( (
ph  /\  R  = 
0 )  ->  (
( ( M ^
2 )  ||  (
( A ^ 2 )  +  ( B ^ 2 ) )  /\  ( M ^
2 )  ||  (
( C ^ 2 )  +  ( D ^ 2 ) ) )  ->  ( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) ) )
129104, 123, 128mp2and 433 . . . . 5  |-  ( (
ph  /\  R  = 
0 )  ->  ( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
13096adantr 276 . . . . . . . 8  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  e.  ZZ )
131124adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  e.  ZZ )
13243adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  +  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  =  ( ( M ^ 2 )  / 
2 ) )
133 4sqlem11.1 . . . . . . . . . . . . . . . 16  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
134 4sq.2 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  NN )
135 4sq.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  =  ( ( 2  x.  N )  +  1 ) )
136 4sq.4 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  Prime )
137 4sq.5 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 0 ... (
2  x.  N ) )  C_  S )
138 4sq.6 . . . . . . . . . . . . . . . 16  |-  T  =  { i  e.  NN  |  ( i  x.  P )  e.  S }
139 4sq.7 . . . . . . . . . . . . . . . 16  |-  M  = inf ( T ,  RR ,  <  )
140 4sq.p . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( M  x.  P
)  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
141133, 134, 135, 136, 137, 138, 139, 3, 2, 12, 20, 27, 6, 13, 21, 28, 1, 1404sqlem15 12543 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( E ^ 2 ) )  =  0  /\  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( F ^ 2 ) )  =  0 )  /\  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( G ^ 2 ) )  =  0  /\  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( H ^ 2 ) )  =  0 ) ) )
142141simpld 112 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( E ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( F ^ 2 ) )  =  0 ) )
143142simpld 112 . . . . . . . . . . . . 13  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( E ^ 2 ) )  =  0 )
14438recnd 8048 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  e.  CC )
14510zcnd 9440 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( E ^ 2 )  e.  CC )
146144, 145subeq0ad 8340 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( ( M ^ 2 )  /  2 )  /  2 )  -  ( E ^ 2 ) )  =  0  <->  (
( ( M ^
2 )  /  2
)  /  2 )  =  ( E ^
2 ) ) )
147146adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( E ^ 2 ) )  =  0  <->  ( (
( M ^ 2 )  /  2 )  /  2 )  =  ( E ^ 2 ) ) )
148143, 147mpbid 147 . . . . . . . . . . . 12  |-  ( (
ph  /\  R  =  M )  ->  (
( ( M ^
2 )  /  2
)  /  2 )  =  ( E ^
2 ) )
14910adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  R  =  M )  ->  ( E ^ 2 )  e.  ZZ )
150148, 149eqeltrd 2270 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  (
( ( M ^
2 )  /  2
)  /  2 )  e.  ZZ )
151150, 150zaddcld 9443 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  +  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  e.  ZZ )
152132, 151eqeltrrd 2271 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  (
( M ^ 2 )  /  2 )  e.  ZZ )
153131, 152zsubcld 9444 . . . . . . . 8  |-  ( (
ph  /\  R  =  M )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( ( M ^ 2 )  /  2 ) )  e.  ZZ )
154125adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  (
( C ^ 2 )  +  ( D ^ 2 ) )  e.  ZZ )
155154, 152zsubcld 9444 . . . . . . . 8  |-  ( (
ph  /\  R  =  M )  ->  (
( ( C ^
2 )  +  ( D ^ 2 ) )  -  ( ( M ^ 2 )  /  2 ) )  e.  ZZ )
15698adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  ( A ^ 2 )  e.  ZZ )
157156, 150zsubcld 9444 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  (
( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  e.  ZZ )
158100adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  ( B ^ 2 )  e.  ZZ )
159158, 150zsubcld 9444 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  (
( B ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  e.  ZZ )
1602, 5, 6, 1434sqlem10 12525 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( A ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) ) )
161142simprd 114 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( F ^ 2 ) )  =  0 )
16212, 5, 13, 1614sqlem10 12525 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( B ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) ) )
163130, 157, 159, 160, 162dvds2addd 11972 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  +  ( ( B ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) ) )
16498zcnd 9440 . . . . . . . . . . . 12  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
165100zcnd 9440 . . . . . . . . . . . 12  |-  ( ph  ->  ( B ^ 2 )  e.  CC )
166164, 165, 144, 144addsub4d 8377 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  +  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  +  ( ( B ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) ) ) )
16743oveq2d 5934 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  +  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  ( ( M ^ 2 )  / 
2 ) ) )
168166, 167eqtr3d 2228 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  +  ( ( B ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  ( ( M ^ 2 )  / 
2 ) ) )
169168adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  (
( ( A ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) )  +  ( ( B ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )  =  ( ( ( A ^ 2 )  +  ( B ^
2 ) )  -  ( ( M ^
2 )  /  2
) ) )
170163, 169breqtrd 4055 . . . . . . . 8  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  (
( M ^ 2 )  /  2 ) ) )
171117adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  ( C ^ 2 )  e.  ZZ )
172171, 150zsubcld 9444 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  (
( C ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  e.  ZZ )
173119adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  ( D ^ 2 )  e.  ZZ )
174173, 150zsubcld 9444 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  (
( D ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  e.  ZZ )
175141simprd 114 . . . . . . . . . . . 12  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( G ^ 2 ) )  =  0  /\  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( H ^ 2 ) )  =  0 ) )
176175simpld 112 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( G ^ 2 ) )  =  0 )
17720, 5, 21, 1764sqlem10 12525 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( C ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) ) )
178175simprd 114 . . . . . . . . . . 11  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  -  ( H ^ 2 ) )  =  0 )
17927, 5, 28, 1784sqlem10 12525 . . . . . . . . . 10  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( D ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) ) )
180130, 172, 174, 177, 179dvds2addd 11972 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( ( C ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  +  ( ( D ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) ) )
181117zcnd 9440 . . . . . . . . . . . 12  |-  ( ph  ->  ( C ^ 2 )  e.  CC )
182119zcnd 9440 . . . . . . . . . . . 12  |-  ( ph  ->  ( D ^ 2 )  e.  CC )
183181, 182, 144, 144addsub4d 8377 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  +  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( C ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) )  +  ( ( D ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) ) ) )
18443oveq2d 5934 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  (
( ( ( M ^ 2 )  / 
2 )  /  2
)  +  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  ( ( M ^ 2 )  / 
2 ) ) )
185183, 184eqtr3d 2228 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C ^ 2 )  -  ( ( ( M ^ 2 )  / 
2 )  /  2
) )  +  ( ( D ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  /  2 ) ) )  =  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  ( ( M ^ 2 )  / 
2 ) ) )
186185adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  R  =  M )  ->  (
( ( C ^
2 )  -  (
( ( M ^
2 )  /  2
)  /  2 ) )  +  ( ( D ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )  =  ( ( ( C ^ 2 )  +  ( D ^
2 ) )  -  ( ( M ^
2 )  /  2
) ) )
187180, 186breqtrd 4055 . . . . . . . 8  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  (
( M ^ 2 )  /  2 ) ) )
188130, 153, 155, 170, 187dvds2addd 11972 . . . . . . 7  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( ( ( A ^ 2 )  +  ( B ^
2 ) )  -  ( ( M ^
2 )  /  2
) )  +  ( ( ( C ^
2 )  +  ( D ^ 2 ) )  -  ( ( M ^ 2 )  /  2 ) ) ) )
189124zcnd 9440 . . . . . . . . . 10  |-  ( ph  ->  ( ( A ^
2 )  +  ( B ^ 2 ) )  e.  CC )
190125zcnd 9440 . . . . . . . . . 10  |-  ( ph  ->  ( ( C ^
2 )  +  ( D ^ 2 ) )  e.  CC )
191189, 190, 42, 42addsub4d 8377 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  -  (
( ( M ^
2 )  /  2
)  +  ( ( M ^ 2 )  /  2 ) ) )  =  ( ( ( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( ( M ^ 2 )  /  2 ) )  +  ( ( ( C ^ 2 )  +  ( D ^
2 ) )  -  ( ( M ^
2 )  /  2
) ) ) )
19251oveq2d 5934 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  -  (
( ( M ^
2 )  /  2
)  +  ( ( M ^ 2 )  /  2 ) ) )  =  ( ( ( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  -  ( M ^
2 ) ) )
193191, 192eqtr3d 2228 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( A ^ 2 )  +  ( B ^
2 ) )  -  ( ( M ^
2 )  /  2
) )  +  ( ( ( C ^
2 )  +  ( D ^ 2 ) )  -  ( ( M ^ 2 )  /  2 ) ) )  =  ( ( ( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  -  ( M ^
2 ) ) )
194193adantr 276 . . . . . . 7  |-  ( (
ph  /\  R  =  M )  ->  (
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  -  (
( M ^ 2 )  /  2 ) )  +  ( ( ( C ^ 2 )  +  ( D ^ 2 ) )  -  ( ( M ^ 2 )  / 
2 ) ) )  =  ( ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  -  ( M ^ 2 ) ) )
195188, 194breqtrd 4055 . . . . . 6  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  -  ( M ^ 2 ) ) )
196124, 125zaddcld 9443 . . . . . . . 8  |-  ( ph  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  e.  ZZ )
197196adantr 276 . . . . . . 7  |-  ( (
ph  /\  R  =  M )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^
2 ) ) )  e.  ZZ )
198 dvdssubr 11982 . . . . . . 7  |-  ( ( ( M ^ 2 )  e.  ZZ  /\  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  e.  ZZ )  ->  ( ( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  <->  ( M ^
2 )  ||  (
( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  -  ( M ^ 2 ) ) ) )
199130, 197, 198syl2anc 411 . . . . . 6  |-  ( (
ph  /\  R  =  M )  ->  (
( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) )  <->  ( M ^ 2 )  ||  ( ( ( ( A ^ 2 )  +  ( B ^
2 ) )  +  ( ( C ^
2 )  +  ( D ^ 2 ) ) )  -  ( M ^ 2 ) ) ) )
200195, 199mpbird 167 . . . . 5  |-  ( (
ph  /\  R  =  M )  ->  ( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
201129, 200jaodan 798 . . . 4  |-  ( (
ph  /\  ( R  =  0  \/  R  =  M ) )  -> 
( M ^ 2 )  ||  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
202140adantr 276 . . . 4  |-  ( (
ph  /\  ( R  =  0  \/  R  =  M ) )  -> 
( M  x.  P
)  =  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  +  ( ( C ^ 2 )  +  ( D ^ 2 ) ) ) )
203201, 202breqtrrd 4057 . . 3  |-  ( (
ph  /\  ( R  =  0  \/  R  =  M ) )  -> 
( M ^ 2 )  ||  ( M  x.  P ) )
204203ex 115 . 2  |-  ( ph  ->  ( ( R  =  0  \/  R  =  M )  ->  ( M ^ 2 )  ||  ( M  x.  P
) ) )
20561, 204jca 306 1  |-  ( ph  ->  ( R  <_  M  /\  ( ( R  =  0  \/  R  =  M )  ->  ( M ^ 2 )  ||  ( M  x.  P
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   {cab 2179   E.wrex 2473   {crab 2476    C_ wss 3153   class class class wbr 4029   ` cfv 5254  (class class class)co 5918  infcinf 7042   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190    / cdiv 8691   NNcn 8982   2c2 9033   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074    mod cmo 10393   ^cexp 10609    || cdvds 11930   Primecprime 12245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080
This theorem is referenced by:  4sqlem17  12545
  Copyright terms: Public domain W3C validator