ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslemub Unicode version

Theorem mertenslemub 11303
Description: Lemma for mertensabs 11306. An upper bound for  T. (Contributed by Jim Kingdon, 3-Dec-2022.)
Hypotheses
Ref Expression
mertenslemub.gb  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
mertenslemub.b  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
mertenslemub.cvg  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
mertenslemub.t  |-  T  =  { z  |  E. n  e.  ( 0 ... ( S  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
mertenslemub.elt  |-  ( ph  ->  X  e.  T )
mertenslemub.s  |-  ( ph  ->  S  e.  NN )
Assertion
Ref Expression
mertenslemub  |-  ( ph  ->  X  <_  sum_ n  e.  ( 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
Distinct variable groups:    k, G, n, z    S, k, n, z   
n, X, z    ph, k, n
Allowed substitution hints:    ph( z)    B( z,
k, n)    T( z,
k, n)    X( k)

Proof of Theorem mertenslemub
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 mertenslemub.elt . . . 4  |-  ( ph  ->  X  e.  T )
2 eqeq1 2146 . . . . . . 7  |-  ( z  =  X  ->  (
z  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <->  X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) ) )
32rexbidv 2438 . . . . . 6  |-  ( z  =  X  ->  ( E. n  e.  (
0 ... ( S  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <->  E. n  e.  (
0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
4 mertenslemub.t . . . . . 6  |-  T  =  { z  |  E. n  e.  ( 0 ... ( S  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
53, 4elab2g 2831 . . . . 5  |-  ( X  e.  T  ->  ( X  e.  T  <->  E. n  e.  ( 0 ... ( S  -  1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) ) )
61, 5syl 14 . . . 4  |-  ( ph  ->  ( X  e.  T  <->  E. n  e.  ( 0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
71, 6mpbid 146 . . 3  |-  ( ph  ->  E. n  e.  ( 0 ... ( S  -  1 ) ) X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
8 fvoveq1 5797 . . . . . . 7  |-  ( n  =  a  ->  ( ZZ>=
`  ( n  + 
1 ) )  =  ( ZZ>= `  ( a  +  1 ) ) )
98sumeq1d 11135 . . . . . 6  |-  ( n  =  a  ->  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `  k
) )
109fveq2d 5425 . . . . 5  |-  ( n  =  a  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) )
1110eqeq2d 2151 . . . 4  |-  ( n  =  a  ->  ( X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <->  X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )
1211cbvrexv 2655 . . 3  |-  ( E. n  e.  ( 0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <->  E. a  e.  (
0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) )
137, 12sylib 121 . 2  |-  ( ph  ->  E. a  e.  ( 0 ... ( S  -  1 ) ) X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) )
14 simprr 521 . . 3  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) )
15 0zd 9066 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  0  e.  ZZ )
16 mertenslemub.s . . . . . . . 8  |-  ( ph  ->  S  e.  NN )
1716adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  S  e.  NN )
1817nnzd 9172 . . . . . 6  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  S  e.  ZZ )
19 1zzd 9081 . . . . . 6  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  1  e.  ZZ )
2018, 19zsubcld 9178 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  ( S  -  1 )  e.  ZZ )
2115, 20fzfigd 10204 . . . 4  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  (
0 ... ( S  - 
1 ) )  e. 
Fin )
22 eqid 2139 . . . . . . 7  |-  ( ZZ>= `  ( n  +  1
) )  =  (
ZZ>= `  ( n  + 
1 ) )
23 elfzelz 9806 . . . . . . . . 9  |-  ( n  e.  ( 0 ... ( S  -  1 ) )  ->  n  e.  ZZ )
2423adantl 275 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  n  e.  ZZ )
2524peano2zd 9176 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  (
n  +  1 )  e.  ZZ )
26 eqidd 2140 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( G `  k )  =  ( G `  k ) )
27 simpll 518 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ph )
28 elfznn0 9894 . . . . . . . . . . 11  |-  ( n  e.  ( 0 ... ( S  -  1 ) )  ->  n  e.  NN0 )
2928ad2antlr 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  n  e.  NN0 )
30 peano2nn0 9017 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( n  +  1 )  e. 
NN0 )
3129, 30syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( n  +  1 )  e. 
NN0 )
32 eluznn0 9393 . . . . . . . . 9  |-  ( ( ( n  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( n  +  1
) ) )  -> 
k  e.  NN0 )
3331, 32sylancom 416 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  k  e.  NN0 )
34 mertenslemub.gb . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
35 mertenslemub.b . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
3634, 35eqeltrd 2216 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
3727, 33, 36syl2anc 408 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( G `  k )  e.  CC )
38 mertenslemub.cvg . . . . . . . . 9  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
3938adantr 274 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  seq 0 (  +  ,  G )  e.  dom  ~~>  )
40 nn0uz 9360 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
4128adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  n  e.  NN0 )
4241, 30syl 14 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  (
n  +  1 )  e.  NN0 )
4336adantlr 468 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
4440, 42, 43iserex 11108 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  (  seq 0 (  +  ,  G )  e.  dom  ~~>  <->  seq ( n  +  1
) (  +  ,  G )  e.  dom  ~~>  ) )
4539, 44mpbid 146 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  seq ( n  +  1
) (  +  ,  G )  e.  dom  ~~>  )
4622, 25, 26, 37, 45isumcl 11194 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
)  e.  CC )
4746adantlr 468 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  ( 0 ... ( S  - 
1 ) )  /\  X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )  /\  n  e.  ( 0 ... ( S  - 
1 ) ) )  ->  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k )  e.  CC )
4847abscld 10953 . . . 4  |-  ( ( ( ph  /\  (
a  e.  ( 0 ... ( S  - 
1 ) )  /\  X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )  /\  n  e.  ( 0 ... ( S  - 
1 ) ) )  ->  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  e.  RR )
4947absge0d 10956 . . . 4  |-  ( ( ( ph  /\  (
a  e.  ( 0 ... ( S  - 
1 ) )  /\  X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )  /\  n  e.  ( 0 ... ( S  - 
1 ) ) )  ->  0  <_  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
50 simprl 520 . . . 4  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  a  e.  ( 0 ... ( S  -  1 ) ) )
5121, 48, 49, 10, 50fsumge1 11230 . . 3  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) )  <_  sum_ n  e.  ( 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
5214, 51eqbrtrd 3950 . 2  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  X  <_ 
sum_ n  e.  (
0 ... ( S  - 
1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) )
5313, 52rexlimddv 2554 1  |-  ( ph  ->  X  <_  sum_ n  e.  ( 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   {cab 2125   E.wrex 2417   class class class wbr 3929   dom cdm 4539   ` cfv 5123  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621    + caddc 7623    <_ cle 7801    - cmin 7933   NNcn 8720   NN0cn0 8977   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790    seqcseq 10218   abscabs 10769    ~~> cli 11047   sum_csu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  mertenslem2  11305
  Copyright terms: Public domain W3C validator