ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslemub Unicode version

Theorem mertenslemub 11542
Description: Lemma for mertensabs 11545. An upper bound for  T. (Contributed by Jim Kingdon, 3-Dec-2022.)
Hypotheses
Ref Expression
mertenslemub.gb  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
mertenslemub.b  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
mertenslemub.cvg  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
mertenslemub.t  |-  T  =  { z  |  E. n  e.  ( 0 ... ( S  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
mertenslemub.elt  |-  ( ph  ->  X  e.  T )
mertenslemub.s  |-  ( ph  ->  S  e.  NN )
Assertion
Ref Expression
mertenslemub  |-  ( ph  ->  X  <_  sum_ n  e.  ( 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
Distinct variable groups:    k, G, n, z    S, k, n, z   
n, X, z    ph, k, n
Allowed substitution hints:    ph( z)    B( z,
k, n)    T( z,
k, n)    X( k)

Proof of Theorem mertenslemub
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 mertenslemub.elt . . . 4  |-  ( ph  ->  X  e.  T )
2 eqeq1 2184 . . . . . . 7  |-  ( z  =  X  ->  (
z  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <->  X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) ) )
32rexbidv 2478 . . . . . 6  |-  ( z  =  X  ->  ( E. n  e.  (
0 ... ( S  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <->  E. n  e.  (
0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
4 mertenslemub.t . . . . . 6  |-  T  =  { z  |  E. n  e.  ( 0 ... ( S  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
53, 4elab2g 2885 . . . . 5  |-  ( X  e.  T  ->  ( X  e.  T  <->  E. n  e.  ( 0 ... ( S  -  1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) ) )
61, 5syl 14 . . . 4  |-  ( ph  ->  ( X  e.  T  <->  E. n  e.  ( 0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
71, 6mpbid 147 . . 3  |-  ( ph  ->  E. n  e.  ( 0 ... ( S  -  1 ) ) X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
8 fvoveq1 5898 . . . . . . 7  |-  ( n  =  a  ->  ( ZZ>=
`  ( n  + 
1 ) )  =  ( ZZ>= `  ( a  +  1 ) ) )
98sumeq1d 11374 . . . . . 6  |-  ( n  =  a  ->  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `  k
) )
109fveq2d 5520 . . . . 5  |-  ( n  =  a  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) )
1110eqeq2d 2189 . . . 4  |-  ( n  =  a  ->  ( X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <->  X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )
1211cbvrexv 2705 . . 3  |-  ( E. n  e.  ( 0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <->  E. a  e.  (
0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) )
137, 12sylib 122 . 2  |-  ( ph  ->  E. a  e.  ( 0 ... ( S  -  1 ) ) X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) )
14 simprr 531 . . 3  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) )
15 0zd 9265 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  0  e.  ZZ )
16 mertenslemub.s . . . . . . . 8  |-  ( ph  ->  S  e.  NN )
1716adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  S  e.  NN )
1817nnzd 9374 . . . . . 6  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  S  e.  ZZ )
19 1zzd 9280 . . . . . 6  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  1  e.  ZZ )
2018, 19zsubcld 9380 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  ( S  -  1 )  e.  ZZ )
2115, 20fzfigd 10431 . . . 4  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  (
0 ... ( S  - 
1 ) )  e. 
Fin )
22 eqid 2177 . . . . . . 7  |-  ( ZZ>= `  ( n  +  1
) )  =  (
ZZ>= `  ( n  + 
1 ) )
23 elfzelz 10025 . . . . . . . . 9  |-  ( n  e.  ( 0 ... ( S  -  1 ) )  ->  n  e.  ZZ )
2423adantl 277 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  n  e.  ZZ )
2524peano2zd 9378 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  (
n  +  1 )  e.  ZZ )
26 eqidd 2178 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( G `  k )  =  ( G `  k ) )
27 simpll 527 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ph )
28 elfznn0 10114 . . . . . . . . . . 11  |-  ( n  e.  ( 0 ... ( S  -  1 ) )  ->  n  e.  NN0 )
2928ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  n  e.  NN0 )
30 peano2nn0 9216 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( n  +  1 )  e. 
NN0 )
3129, 30syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( n  +  1 )  e. 
NN0 )
32 eluznn0 9599 . . . . . . . . 9  |-  ( ( ( n  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( n  +  1
) ) )  -> 
k  e.  NN0 )
3331, 32sylancom 420 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  k  e.  NN0 )
34 mertenslemub.gb . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
35 mertenslemub.b . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
3634, 35eqeltrd 2254 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
3727, 33, 36syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( G `  k )  e.  CC )
38 mertenslemub.cvg . . . . . . . . 9  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
3938adantr 276 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  seq 0 (  +  ,  G )  e.  dom  ~~>  )
40 nn0uz 9562 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
4128adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  n  e.  NN0 )
4241, 30syl 14 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  (
n  +  1 )  e.  NN0 )
4336adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
4440, 42, 43iserex 11347 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  (  seq 0 (  +  ,  G )  e.  dom  ~~>  <->  seq ( n  +  1
) (  +  ,  G )  e.  dom  ~~>  ) )
4539, 44mpbid 147 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  seq ( n  +  1
) (  +  ,  G )  e.  dom  ~~>  )
4622, 25, 26, 37, 45isumcl 11433 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
)  e.  CC )
4746adantlr 477 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  ( 0 ... ( S  - 
1 ) )  /\  X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )  /\  n  e.  ( 0 ... ( S  - 
1 ) ) )  ->  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k )  e.  CC )
4847abscld 11190 . . . 4  |-  ( ( ( ph  /\  (
a  e.  ( 0 ... ( S  - 
1 ) )  /\  X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )  /\  n  e.  ( 0 ... ( S  - 
1 ) ) )  ->  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  e.  RR )
4947absge0d 11193 . . . 4  |-  ( ( ( ph  /\  (
a  e.  ( 0 ... ( S  - 
1 ) )  /\  X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )  /\  n  e.  ( 0 ... ( S  - 
1 ) ) )  ->  0  <_  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
50 simprl 529 . . . 4  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  a  e.  ( 0 ... ( S  -  1 ) ) )
5121, 48, 49, 10, 50fsumge1 11469 . . 3  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) )  <_  sum_ n  e.  ( 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
5214, 51eqbrtrd 4026 . 2  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  X  <_ 
sum_ n  e.  (
0 ... ( S  - 
1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) )
5313, 52rexlimddv 2599 1  |-  ( ph  ->  X  <_  sum_ n  e.  ( 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   {cab 2163   E.wrex 2456   class class class wbr 4004   dom cdm 4627   ` cfv 5217  (class class class)co 5875   CCcc 7809   0cc0 7811   1c1 7812    + caddc 7814    <_ cle 7993    - cmin 8128   NNcn 8919   NN0cn0 9176   ZZcz 9253   ZZ>=cuz 9528   ...cfz 10008    seqcseq 10445   abscabs 11006    ~~> cli 11286   sum_csu 11361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-oadd 6421  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-ico 9894  df-fz 10009  df-fzo 10143  df-seqfrec 10446  df-exp 10520  df-ihash 10756  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-sumdc 11362
This theorem is referenced by:  mertenslem2  11544
  Copyright terms: Public domain W3C validator