ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslemub Unicode version

Theorem mertenslemub 11475
Description: Lemma for mertensabs 11478. An upper bound for  T. (Contributed by Jim Kingdon, 3-Dec-2022.)
Hypotheses
Ref Expression
mertenslemub.gb  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
mertenslemub.b  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
mertenslemub.cvg  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
mertenslemub.t  |-  T  =  { z  |  E. n  e.  ( 0 ... ( S  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
mertenslemub.elt  |-  ( ph  ->  X  e.  T )
mertenslemub.s  |-  ( ph  ->  S  e.  NN )
Assertion
Ref Expression
mertenslemub  |-  ( ph  ->  X  <_  sum_ n  e.  ( 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
Distinct variable groups:    k, G, n, z    S, k, n, z   
n, X, z    ph, k, n
Allowed substitution hints:    ph( z)    B( z,
k, n)    T( z,
k, n)    X( k)

Proof of Theorem mertenslemub
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 mertenslemub.elt . . . 4  |-  ( ph  ->  X  e.  T )
2 eqeq1 2172 . . . . . . 7  |-  ( z  =  X  ->  (
z  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <->  X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) ) )
32rexbidv 2467 . . . . . 6  |-  ( z  =  X  ->  ( E. n  e.  (
0 ... ( S  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <->  E. n  e.  (
0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
4 mertenslemub.t . . . . . 6  |-  T  =  { z  |  E. n  e.  ( 0 ... ( S  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
53, 4elab2g 2873 . . . . 5  |-  ( X  e.  T  ->  ( X  e.  T  <->  E. n  e.  ( 0 ... ( S  -  1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) ) )
61, 5syl 14 . . . 4  |-  ( ph  ->  ( X  e.  T  <->  E. n  e.  ( 0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
71, 6mpbid 146 . . 3  |-  ( ph  ->  E. n  e.  ( 0 ... ( S  -  1 ) ) X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
8 fvoveq1 5865 . . . . . . 7  |-  ( n  =  a  ->  ( ZZ>=
`  ( n  + 
1 ) )  =  ( ZZ>= `  ( a  +  1 ) ) )
98sumeq1d 11307 . . . . . 6  |-  ( n  =  a  ->  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `  k
) )
109fveq2d 5490 . . . . 5  |-  ( n  =  a  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) )
1110eqeq2d 2177 . . . 4  |-  ( n  =  a  ->  ( X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <->  X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )
1211cbvrexv 2693 . . 3  |-  ( E. n  e.  ( 0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <->  E. a  e.  (
0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) )
137, 12sylib 121 . 2  |-  ( ph  ->  E. a  e.  ( 0 ... ( S  -  1 ) ) X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) )
14 simprr 522 . . 3  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) )
15 0zd 9203 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  0  e.  ZZ )
16 mertenslemub.s . . . . . . . 8  |-  ( ph  ->  S  e.  NN )
1716adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  S  e.  NN )
1817nnzd 9312 . . . . . 6  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  S  e.  ZZ )
19 1zzd 9218 . . . . . 6  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  1  e.  ZZ )
2018, 19zsubcld 9318 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  ( S  -  1 )  e.  ZZ )
2115, 20fzfigd 10366 . . . 4  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  (
0 ... ( S  - 
1 ) )  e. 
Fin )
22 eqid 2165 . . . . . . 7  |-  ( ZZ>= `  ( n  +  1
) )  =  (
ZZ>= `  ( n  + 
1 ) )
23 elfzelz 9960 . . . . . . . . 9  |-  ( n  e.  ( 0 ... ( S  -  1 ) )  ->  n  e.  ZZ )
2423adantl 275 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  n  e.  ZZ )
2524peano2zd 9316 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  (
n  +  1 )  e.  ZZ )
26 eqidd 2166 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( G `  k )  =  ( G `  k ) )
27 simpll 519 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ph )
28 elfznn0 10049 . . . . . . . . . . 11  |-  ( n  e.  ( 0 ... ( S  -  1 ) )  ->  n  e.  NN0 )
2928ad2antlr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  n  e.  NN0 )
30 peano2nn0 9154 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( n  +  1 )  e. 
NN0 )
3129, 30syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( n  +  1 )  e. 
NN0 )
32 eluznn0 9537 . . . . . . . . 9  |-  ( ( ( n  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( n  +  1
) ) )  -> 
k  e.  NN0 )
3331, 32sylancom 417 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  k  e.  NN0 )
34 mertenslemub.gb . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
35 mertenslemub.b . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
3634, 35eqeltrd 2243 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
3727, 33, 36syl2anc 409 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( G `  k )  e.  CC )
38 mertenslemub.cvg . . . . . . . . 9  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
3938adantr 274 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  seq 0 (  +  ,  G )  e.  dom  ~~>  )
40 nn0uz 9500 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
4128adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  n  e.  NN0 )
4241, 30syl 14 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  (
n  +  1 )  e.  NN0 )
4336adantlr 469 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
4440, 42, 43iserex 11280 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  (  seq 0 (  +  ,  G )  e.  dom  ~~>  <->  seq ( n  +  1
) (  +  ,  G )  e.  dom  ~~>  ) )
4539, 44mpbid 146 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  seq ( n  +  1
) (  +  ,  G )  e.  dom  ~~>  )
4622, 25, 26, 37, 45isumcl 11366 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
)  e.  CC )
4746adantlr 469 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  ( 0 ... ( S  - 
1 ) )  /\  X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )  /\  n  e.  ( 0 ... ( S  - 
1 ) ) )  ->  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k )  e.  CC )
4847abscld 11123 . . . 4  |-  ( ( ( ph  /\  (
a  e.  ( 0 ... ( S  - 
1 ) )  /\  X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )  /\  n  e.  ( 0 ... ( S  - 
1 ) ) )  ->  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  e.  RR )
4947absge0d 11126 . . . 4  |-  ( ( ( ph  /\  (
a  e.  ( 0 ... ( S  - 
1 ) )  /\  X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )  /\  n  e.  ( 0 ... ( S  - 
1 ) ) )  ->  0  <_  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
50 simprl 521 . . . 4  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  a  e.  ( 0 ... ( S  -  1 ) ) )
5121, 48, 49, 10, 50fsumge1 11402 . . 3  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) )  <_  sum_ n  e.  ( 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
5214, 51eqbrtrd 4004 . 2  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  X  <_ 
sum_ n  e.  (
0 ... ( S  - 
1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) )
5313, 52rexlimddv 2588 1  |-  ( ph  ->  X  <_  sum_ n  e.  ( 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   {cab 2151   E.wrex 2445   class class class wbr 3982   dom cdm 4604   ` cfv 5188  (class class class)co 5842   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    <_ cle 7934    - cmin 8069   NNcn 8857   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944    seqcseq 10380   abscabs 10939    ~~> cli 11219   sum_csu 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-ico 9830  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295
This theorem is referenced by:  mertenslem2  11477
  Copyright terms: Public domain W3C validator