ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslemub Unicode version

Theorem mertenslemub 11845
Description: Lemma for mertensabs 11848. An upper bound for  T. (Contributed by Jim Kingdon, 3-Dec-2022.)
Hypotheses
Ref Expression
mertenslemub.gb  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
mertenslemub.b  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
mertenslemub.cvg  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
mertenslemub.t  |-  T  =  { z  |  E. n  e.  ( 0 ... ( S  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
mertenslemub.elt  |-  ( ph  ->  X  e.  T )
mertenslemub.s  |-  ( ph  ->  S  e.  NN )
Assertion
Ref Expression
mertenslemub  |-  ( ph  ->  X  <_  sum_ n  e.  ( 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
Distinct variable groups:    k, G, n, z    S, k, n, z   
n, X, z    ph, k, n
Allowed substitution hints:    ph( z)    B( z,
k, n)    T( z,
k, n)    X( k)

Proof of Theorem mertenslemub
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 mertenslemub.elt . . . 4  |-  ( ph  ->  X  e.  T )
2 eqeq1 2212 . . . . . . 7  |-  ( z  =  X  ->  (
z  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <->  X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) ) )
32rexbidv 2507 . . . . . 6  |-  ( z  =  X  ->  ( E. n  e.  (
0 ... ( S  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <->  E. n  e.  (
0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
4 mertenslemub.t . . . . . 6  |-  T  =  { z  |  E. n  e.  ( 0 ... ( S  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
53, 4elab2g 2920 . . . . 5  |-  ( X  e.  T  ->  ( X  e.  T  <->  E. n  e.  ( 0 ... ( S  -  1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) ) )
61, 5syl 14 . . . 4  |-  ( ph  ->  ( X  e.  T  <->  E. n  e.  ( 0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
71, 6mpbid 147 . . 3  |-  ( ph  ->  E. n  e.  ( 0 ... ( S  -  1 ) ) X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
8 fvoveq1 5967 . . . . . . 7  |-  ( n  =  a  ->  ( ZZ>=
`  ( n  + 
1 ) )  =  ( ZZ>= `  ( a  +  1 ) ) )
98sumeq1d 11677 . . . . . 6  |-  ( n  =  a  ->  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `  k
) )
109fveq2d 5580 . . . . 5  |-  ( n  =  a  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) )
1110eqeq2d 2217 . . . 4  |-  ( n  =  a  ->  ( X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <->  X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )
1211cbvrexv 2739 . . 3  |-  ( E. n  e.  ( 0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <->  E. a  e.  (
0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) )
137, 12sylib 122 . 2  |-  ( ph  ->  E. a  e.  ( 0 ... ( S  -  1 ) ) X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) )
14 simprr 531 . . 3  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) )
15 0zd 9384 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  0  e.  ZZ )
16 mertenslemub.s . . . . . . . 8  |-  ( ph  ->  S  e.  NN )
1716adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  S  e.  NN )
1817nnzd 9494 . . . . . 6  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  S  e.  ZZ )
19 1zzd 9399 . . . . . 6  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  1  e.  ZZ )
2018, 19zsubcld 9500 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  ( S  -  1 )  e.  ZZ )
2115, 20fzfigd 10576 . . . 4  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  (
0 ... ( S  - 
1 ) )  e. 
Fin )
22 eqid 2205 . . . . . . 7  |-  ( ZZ>= `  ( n  +  1
) )  =  (
ZZ>= `  ( n  + 
1 ) )
23 elfzelz 10147 . . . . . . . . 9  |-  ( n  e.  ( 0 ... ( S  -  1 ) )  ->  n  e.  ZZ )
2423adantl 277 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  n  e.  ZZ )
2524peano2zd 9498 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  (
n  +  1 )  e.  ZZ )
26 eqidd 2206 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( G `  k )  =  ( G `  k ) )
27 simpll 527 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ph )
28 elfznn0 10236 . . . . . . . . . . 11  |-  ( n  e.  ( 0 ... ( S  -  1 ) )  ->  n  e.  NN0 )
2928ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  n  e.  NN0 )
30 peano2nn0 9335 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( n  +  1 )  e. 
NN0 )
3129, 30syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( n  +  1 )  e. 
NN0 )
32 eluznn0 9720 . . . . . . . . 9  |-  ( ( ( n  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( n  +  1
) ) )  -> 
k  e.  NN0 )
3331, 32sylancom 420 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  k  e.  NN0 )
34 mertenslemub.gb . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
35 mertenslemub.b . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
3634, 35eqeltrd 2282 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
3727, 33, 36syl2anc 411 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( G `  k )  e.  CC )
38 mertenslemub.cvg . . . . . . . . 9  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
3938adantr 276 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  seq 0 (  +  ,  G )  e.  dom  ~~>  )
40 nn0uz 9683 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
4128adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  n  e.  NN0 )
4241, 30syl 14 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  (
n  +  1 )  e.  NN0 )
4336adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
4440, 42, 43iserex 11650 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  (  seq 0 (  +  ,  G )  e.  dom  ~~>  <->  seq ( n  +  1
) (  +  ,  G )  e.  dom  ~~>  ) )
4539, 44mpbid 147 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  seq ( n  +  1
) (  +  ,  G )  e.  dom  ~~>  )
4622, 25, 26, 37, 45isumcl 11736 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
)  e.  CC )
4746adantlr 477 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  ( 0 ... ( S  - 
1 ) )  /\  X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )  /\  n  e.  ( 0 ... ( S  - 
1 ) ) )  ->  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k )  e.  CC )
4847abscld 11492 . . . 4  |-  ( ( ( ph  /\  (
a  e.  ( 0 ... ( S  - 
1 ) )  /\  X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )  /\  n  e.  ( 0 ... ( S  - 
1 ) ) )  ->  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  e.  RR )
4947absge0d 11495 . . . 4  |-  ( ( ( ph  /\  (
a  e.  ( 0 ... ( S  - 
1 ) )  /\  X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )  /\  n  e.  ( 0 ... ( S  - 
1 ) ) )  ->  0  <_  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
50 simprl 529 . . . 4  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  a  e.  ( 0 ... ( S  -  1 ) ) )
5121, 48, 49, 10, 50fsumge1 11772 . . 3  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) )  <_  sum_ n  e.  ( 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
5214, 51eqbrtrd 4066 . 2  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  X  <_ 
sum_ n  e.  (
0 ... ( S  - 
1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) )
5313, 52rexlimddv 2628 1  |-  ( ph  ->  X  <_  sum_ n  e.  ( 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   {cab 2191   E.wrex 2485   class class class wbr 4044   dom cdm 4675   ` cfv 5271  (class class class)co 5944   CCcc 7923   0cc0 7925   1c1 7926    + caddc 7928    <_ cle 8108    - cmin 8243   NNcn 9036   NN0cn0 9295   ZZcz 9372   ZZ>=cuz 9648   ...cfz 10130    seqcseq 10592   abscabs 11308    ~~> cli 11589   sum_csu 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-ico 10016  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665
This theorem is referenced by:  mertenslem2  11847
  Copyright terms: Public domain W3C validator