ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslemub Unicode version

Theorem mertenslemub 11335
Description: Lemma for mertensabs 11338. An upper bound for  T. (Contributed by Jim Kingdon, 3-Dec-2022.)
Hypotheses
Ref Expression
mertenslemub.gb  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
mertenslemub.b  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
mertenslemub.cvg  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
mertenslemub.t  |-  T  =  { z  |  E. n  e.  ( 0 ... ( S  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
mertenslemub.elt  |-  ( ph  ->  X  e.  T )
mertenslemub.s  |-  ( ph  ->  S  e.  NN )
Assertion
Ref Expression
mertenslemub  |-  ( ph  ->  X  <_  sum_ n  e.  ( 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
Distinct variable groups:    k, G, n, z    S, k, n, z   
n, X, z    ph, k, n
Allowed substitution hints:    ph( z)    B( z,
k, n)    T( z,
k, n)    X( k)

Proof of Theorem mertenslemub
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 mertenslemub.elt . . . 4  |-  ( ph  ->  X  e.  T )
2 eqeq1 2147 . . . . . . 7  |-  ( z  =  X  ->  (
z  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <->  X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) ) )
32rexbidv 2439 . . . . . 6  |-  ( z  =  X  ->  ( E. n  e.  (
0 ... ( S  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <->  E. n  e.  (
0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
4 mertenslemub.t . . . . . 6  |-  T  =  { z  |  E. n  e.  ( 0 ... ( S  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
53, 4elab2g 2835 . . . . 5  |-  ( X  e.  T  ->  ( X  e.  T  <->  E. n  e.  ( 0 ... ( S  -  1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) ) )
61, 5syl 14 . . . 4  |-  ( ph  ->  ( X  e.  T  <->  E. n  e.  ( 0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
71, 6mpbid 146 . . 3  |-  ( ph  ->  E. n  e.  ( 0 ... ( S  -  1 ) ) X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
8 fvoveq1 5805 . . . . . . 7  |-  ( n  =  a  ->  ( ZZ>=
`  ( n  + 
1 ) )  =  ( ZZ>= `  ( a  +  1 ) ) )
98sumeq1d 11167 . . . . . 6  |-  ( n  =  a  ->  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `  k
) )
109fveq2d 5433 . . . . 5  |-  ( n  =  a  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) )
1110eqeq2d 2152 . . . 4  |-  ( n  =  a  ->  ( X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <->  X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )
1211cbvrexv 2658 . . 3  |-  ( E. n  e.  ( 0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <->  E. a  e.  (
0 ... ( S  - 
1 ) ) X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) )
137, 12sylib 121 . 2  |-  ( ph  ->  E. a  e.  ( 0 ... ( S  -  1 ) ) X  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) )
14 simprr 522 . . 3  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) )
15 0zd 9090 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  0  e.  ZZ )
16 mertenslemub.s . . . . . . . 8  |-  ( ph  ->  S  e.  NN )
1716adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  S  e.  NN )
1817nnzd 9196 . . . . . 6  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  S  e.  ZZ )
19 1zzd 9105 . . . . . 6  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  1  e.  ZZ )
2018, 19zsubcld 9202 . . . . 5  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  ( S  -  1 )  e.  ZZ )
2115, 20fzfigd 10235 . . . 4  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  (
0 ... ( S  - 
1 ) )  e. 
Fin )
22 eqid 2140 . . . . . . 7  |-  ( ZZ>= `  ( n  +  1
) )  =  (
ZZ>= `  ( n  + 
1 ) )
23 elfzelz 9837 . . . . . . . . 9  |-  ( n  e.  ( 0 ... ( S  -  1 ) )  ->  n  e.  ZZ )
2423adantl 275 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  n  e.  ZZ )
2524peano2zd 9200 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  (
n  +  1 )  e.  ZZ )
26 eqidd 2141 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( G `  k )  =  ( G `  k ) )
27 simpll 519 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ph )
28 elfznn0 9925 . . . . . . . . . . 11  |-  ( n  e.  ( 0 ... ( S  -  1 ) )  ->  n  e.  NN0 )
2928ad2antlr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  n  e.  NN0 )
30 peano2nn0 9041 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( n  +  1 )  e. 
NN0 )
3129, 30syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( n  +  1 )  e. 
NN0 )
32 eluznn0 9420 . . . . . . . . 9  |-  ( ( ( n  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( n  +  1
) ) )  -> 
k  e.  NN0 )
3331, 32sylancom 417 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  k  e.  NN0 )
34 mertenslemub.gb . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
35 mertenslemub.b . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
3634, 35eqeltrd 2217 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
3727, 33, 36syl2anc 409 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  ( ZZ>= `  ( n  +  1 ) ) )  ->  ( G `  k )  e.  CC )
38 mertenslemub.cvg . . . . . . . . 9  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
3938adantr 274 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  seq 0 (  +  ,  G )  e.  dom  ~~>  )
40 nn0uz 9384 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
4128adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  n  e.  NN0 )
4241, 30syl 14 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  (
n  +  1 )  e.  NN0 )
4336adantlr 469 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
4440, 42, 43iserex 11140 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  (  seq 0 (  +  ,  G )  e.  dom  ~~>  <->  seq ( n  +  1
) (  +  ,  G )  e.  dom  ~~>  ) )
4539, 44mpbid 146 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  seq ( n  +  1
) (  +  ,  G )  e.  dom  ~~>  )
4622, 25, 26, 37, 45isumcl 11226 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 0 ... ( S  -  1 ) ) )  ->  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
)  e.  CC )
4746adantlr 469 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  ( 0 ... ( S  - 
1 ) )  /\  X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )  /\  n  e.  ( 0 ... ( S  - 
1 ) ) )  ->  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k )  e.  CC )
4847abscld 10985 . . . 4  |-  ( ( ( ph  /\  (
a  e.  ( 0 ... ( S  - 
1 ) )  /\  X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )  /\  n  e.  ( 0 ... ( S  - 
1 ) ) )  ->  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  e.  RR )
4947absge0d 10988 . . . 4  |-  ( ( ( ph  /\  (
a  e.  ( 0 ... ( S  - 
1 ) )  /\  X  =  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) ) ) )  /\  n  e.  ( 0 ... ( S  - 
1 ) ) )  ->  0  <_  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
50 simprl 521 . . . 4  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  a  e.  ( 0 ... ( S  -  1 ) ) )
5121, 48, 49, 10, 50fsumge1 11262 . . 3  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( a  +  1 ) ) ( G `  k ) )  <_  sum_ n  e.  ( 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
5214, 51eqbrtrd 3958 . 2  |-  ( (
ph  /\  ( a  e.  ( 0 ... ( S  -  1 ) )  /\  X  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( a  +  1 ) ) ( G `
 k ) ) ) )  ->  X  <_ 
sum_ n  e.  (
0 ... ( S  - 
1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) )
5313, 52rexlimddv 2557 1  |-  ( ph  ->  X  <_  sum_ n  e.  ( 0 ... ( S  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   {cab 2126   E.wrex 2418   class class class wbr 3937   dom cdm 4547   ` cfv 5131  (class class class)co 5782   CCcc 7642   0cc0 7644   1c1 7645    + caddc 7647    <_ cle 7825    - cmin 7957   NNcn 8744   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821    seqcseq 10249   abscabs 10801    ~~> cli 11079   sum_csu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  mertenslem2  11337
  Copyright terms: Public domain W3C validator