ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqrt2irrap Unicode version

Theorem sqrt2irrap 11894
Description: The square root of 2 is irrational. That is, for any rational number,  ( sqr `  2
) is apart from it. In the absence of excluded middle, we can distinguish between this and "the square root of 2 is not rational" which is sqrt2irr 11876. (Contributed by Jim Kingdon, 2-Oct-2021.)
Assertion
Ref Expression
sqrt2irrap  |-  ( Q  e.  QQ  ->  ( sqr `  2 ) #  Q
)

Proof of Theorem sqrt2irrap
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9441 . . 3  |-  ( Q  e.  QQ  <->  E. a  e.  ZZ  E. b  e.  NN  Q  =  ( a  /  b ) )
21biimpi 119 . 2  |-  ( Q  e.  QQ  ->  E. a  e.  ZZ  E. b  e.  NN  Q  =  ( a  /  b ) )
3 simplrl 525 . . . . . . . . 9  |-  ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b
) )  ->  a  e.  ZZ )
43adantr 274 . . . . . . . 8  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  a  e.  ZZ )
5 simplrr 526 . . . . . . . . 9  |-  ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b
) )  ->  b  e.  NN )
65adantr 274 . . . . . . . 8  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  b  e.  NN )
7 znq 9443 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  NN )  ->  ( a  /  b
)  e.  QQ )
8 qre 9444 . . . . . . . . 9  |-  ( ( a  /  b )  e.  QQ  ->  (
a  /  b )  e.  RR )
97, 8syl 14 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  NN )  ->  ( a  /  b
)  e.  RR )
104, 6, 9syl2anc 409 . . . . . . 7  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  ( a  /  b )  e.  RR )
11 sqrt2re 11877 . . . . . . . 8  |-  ( sqr `  2 )  e.  RR
1211a1i 9 . . . . . . 7  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  ( sqr `  2 )  e.  RR )
13 0red 7791 . . . . . . . 8  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  0  e.  RR )
144zcnd 9198 . . . . . . . . . 10  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  a  e.  CC )
156nncnd 8758 . . . . . . . . . 10  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  b  e.  CC )
166nnap0d 8790 . . . . . . . . . 10  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  b #  0
)
1714, 15, 16divrecapd 8577 . . . . . . . . 9  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  ( a  /  b )  =  ( a  x.  (
1  /  b ) ) )
184zred 9197 . . . . . . . . . 10  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  a  e.  RR )
196nnrecred 8791 . . . . . . . . . 10  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  ( 1  /  b )  e.  RR )
20 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  a  <_  0 )
21 1red 7805 . . . . . . . . . . 11  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  1  e.  RR )
226nnrpd 9511 . . . . . . . . . . 11  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  b  e.  RR+ )
23 0le1 8267 . . . . . . . . . . . 12  |-  0  <_  1
2423a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  0  <_  1 )
2521, 22, 24divge0d 9554 . . . . . . . . . 10  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  0  <_  ( 1  /  b ) )
26 mulle0r 8726 . . . . . . . . . 10  |-  ( ( ( a  e.  RR  /\  ( 1  /  b
)  e.  RR )  /\  ( a  <_ 
0  /\  0  <_  ( 1  /  b ) ) )  ->  (
a  x.  ( 1  /  b ) )  <_  0 )
2718, 19, 20, 25, 26syl22anc 1218 . . . . . . . . 9  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  ( a  x.  ( 1  /  b
) )  <_  0
)
2817, 27eqbrtrd 3958 . . . . . . . 8  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  ( a  /  b )  <_ 
0 )
29 2re 8814 . . . . . . . . . 10  |-  2  e.  RR
30 2pos 8835 . . . . . . . . . 10  |-  0  <  2
3129, 30sqrtgt0ii 10935 . . . . . . . . 9  |-  0  <  ( sqr `  2
)
3231a1i 9 . . . . . . . 8  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  0  <  ( sqr `  2 ) )
3310, 13, 12, 28, 32lelttrd 7911 . . . . . . 7  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  ( a  /  b )  < 
( sqr `  2
) )
3410, 12, 33gtapd 8423 . . . . . 6  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  a  <_  0
)  ->  ( sqr `  2 ) #  ( a  /  b ) )
353adantr 274 . . . . . . . 8  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  0  <  a
)  ->  a  e.  ZZ )
36 simpr 109 . . . . . . . 8  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  0  <  a
)  ->  0  <  a )
37 elnnz 9088 . . . . . . . 8  |-  ( a  e.  NN  <->  ( a  e.  ZZ  /\  0  < 
a ) )
3835, 36, 37sylanbrc 414 . . . . . . 7  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  0  <  a
)  ->  a  e.  NN )
395adantr 274 . . . . . . 7  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  0  <  a
)  ->  b  e.  NN )
40 sqrt2irraplemnn 11893 . . . . . . 7  |-  ( ( a  e.  NN  /\  b  e.  NN )  ->  ( sqr `  2
) #  ( a  / 
b ) )
4138, 39, 40syl2anc 409 . . . . . 6  |-  ( ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b ) )  /\  0  <  a
)  ->  ( sqr `  2 ) #  ( a  /  b ) )
42 0z 9089 . . . . . . . . 9  |-  0  e.  ZZ
43 zlelttric 9123 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  0  e.  ZZ )  ->  ( a  <_  0  \/  0  <  a ) )
4442, 43mpan2 422 . . . . . . . 8  |-  ( a  e.  ZZ  ->  (
a  <_  0  \/  0  <  a ) )
4544ad2antrl 482 . . . . . . 7  |-  ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  ->  ( a  <_  0  \/  0  < 
a ) )
4645adantr 274 . . . . . 6  |-  ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b
) )  ->  (
a  <_  0  \/  0  <  a ) )
4734, 41, 46mpjaodan 788 . . . . 5  |-  ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b
) )  ->  ( sqr `  2 ) #  ( a  /  b ) )
48 simpr 109 . . . . 5  |-  ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b
) )  ->  Q  =  ( a  / 
b ) )
4947, 48breqtrrd 3964 . . . 4  |-  ( ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  /\  Q  =  ( a  /  b
) )  ->  ( sqr `  2 ) #  Q
)
5049ex 114 . . 3  |-  ( ( Q  e.  QQ  /\  ( a  e.  ZZ  /\  b  e.  NN ) )  ->  ( Q  =  ( a  / 
b )  ->  ( sqr `  2 ) #  Q
) )
5150rexlimdvva 2560 . 2  |-  ( Q  e.  QQ  ->  ( E. a  e.  ZZ  E. b  e.  NN  Q  =  ( a  / 
b )  ->  ( sqr `  2 ) #  Q
) )
522, 51mpd 13 1  |-  ( Q  e.  QQ  ->  ( sqr `  2 ) #  Q
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1332    e. wcel 1481   E.wrex 2418   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   RRcr 7643   0cc0 7644   1c1 7645    x. cmul 7649    < clt 7824    <_ cle 7825   # cap 8367    / cdiv 8456   NNcn 8744   2c2 8795   ZZcz 9078   QQcq 9438   sqrcsqrt 10800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-xor 1355  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-1o 6321  df-2o 6322  df-er 6437  df-en 6643  df-sup 6879  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-fz 9822  df-fzo 9951  df-fl 10074  df-mod 10127  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-dvds 11530  df-gcd 11672  df-prm 11825
This theorem is referenced by:  2irrexpqap  13103
  Copyright terms: Public domain W3C validator