| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sqrt2irrap | Unicode version | ||
| Description: The square root of 2 is
irrational. That is, for any rational number,
|
| Ref | Expression |
|---|---|
| sqrt2irrap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elq 9756 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | simplrl 535 |
. . . . . . . . 9
| |
| 4 | 3 | adantr 276 |
. . . . . . . 8
|
| 5 | simplrr 536 |
. . . . . . . . 9
| |
| 6 | 5 | adantr 276 |
. . . . . . . 8
|
| 7 | znq 9758 |
. . . . . . . . 9
| |
| 8 | qre 9759 |
. . . . . . . . 9
| |
| 9 | 7, 8 | syl 14 |
. . . . . . . 8
|
| 10 | 4, 6, 9 | syl2anc 411 |
. . . . . . 7
|
| 11 | sqrt2re 12535 |
. . . . . . . 8
| |
| 12 | 11 | a1i 9 |
. . . . . . 7
|
| 13 | 0red 8086 |
. . . . . . . 8
| |
| 14 | 4 | zcnd 9509 |
. . . . . . . . . 10
|
| 15 | 6 | nncnd 9063 |
. . . . . . . . . 10
|
| 16 | 6 | nnap0d 9095 |
. . . . . . . . . 10
|
| 17 | 14, 15, 16 | divrecapd 8879 |
. . . . . . . . 9
|
| 18 | 4 | zred 9508 |
. . . . . . . . . 10
|
| 19 | 6 | nnrecred 9096 |
. . . . . . . . . 10
|
| 20 | simpr 110 |
. . . . . . . . . 10
| |
| 21 | 1red 8100 |
. . . . . . . . . . 11
| |
| 22 | 6 | nnrpd 9829 |
. . . . . . . . . . 11
|
| 23 | 0le1 8567 |
. . . . . . . . . . . 12
| |
| 24 | 23 | a1i 9 |
. . . . . . . . . . 11
|
| 25 | 21, 22, 24 | divge0d 9872 |
. . . . . . . . . 10
|
| 26 | mulle0r 9030 |
. . . . . . . . . 10
| |
| 27 | 18, 19, 20, 25, 26 | syl22anc 1251 |
. . . . . . . . 9
|
| 28 | 17, 27 | eqbrtrd 4070 |
. . . . . . . 8
|
| 29 | 2re 9119 |
. . . . . . . . . 10
| |
| 30 | 2pos 9140 |
. . . . . . . . . 10
| |
| 31 | 29, 30 | sqrtgt0ii 11492 |
. . . . . . . . 9
|
| 32 | 31 | a1i 9 |
. . . . . . . 8
|
| 33 | 10, 13, 12, 28, 32 | lelttrd 8210 |
. . . . . . 7
|
| 34 | 10, 12, 33 | gtapd 8723 |
. . . . . 6
|
| 35 | 3 | adantr 276 |
. . . . . . . 8
|
| 36 | simpr 110 |
. . . . . . . 8
| |
| 37 | elnnz 9395 |
. . . . . . . 8
| |
| 38 | 35, 36, 37 | sylanbrc 417 |
. . . . . . 7
|
| 39 | 5 | adantr 276 |
. . . . . . 7
|
| 40 | sqrt2irraplemnn 12551 |
. . . . . . 7
| |
| 41 | 38, 39, 40 | syl2anc 411 |
. . . . . 6
|
| 42 | 0z 9396 |
. . . . . . . . 9
| |
| 43 | zlelttric 9430 |
. . . . . . . . 9
| |
| 44 | 42, 43 | mpan2 425 |
. . . . . . . 8
|
| 45 | 44 | ad2antrl 490 |
. . . . . . 7
|
| 46 | 45 | adantr 276 |
. . . . . 6
|
| 47 | 34, 41, 46 | mpjaodan 800 |
. . . . 5
|
| 48 | simpr 110 |
. . . . 5
| |
| 49 | 47, 48 | breqtrrd 4076 |
. . . 4
|
| 50 | 49 | ex 115 |
. . 3
|
| 51 | 50 | rexlimdvva 2632 |
. 2
|
| 52 | 2, 51 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 ax-caucvg 8058 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-frec 6487 df-1o 6512 df-2o 6513 df-er 6630 df-en 6838 df-sup 7098 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-n0 9309 df-z 9386 df-uz 9662 df-q 9754 df-rp 9789 df-fz 10144 df-fzo 10278 df-fl 10426 df-mod 10481 df-seqfrec 10606 df-exp 10697 df-cj 11203 df-re 11204 df-im 11205 df-rsqrt 11359 df-abs 11360 df-dvds 12149 df-gcd 12325 df-prm 12480 |
| This theorem is referenced by: 2irrexpqap 15500 |
| Copyright terms: Public domain | W3C validator |