ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apbtwnz Unicode version

Theorem apbtwnz 10381
Description: There is a unique greatest integer less than or equal to a real number which is apart from all integers. (Contributed by Jim Kingdon, 11-May-2022.)
Assertion
Ref Expression
apbtwnz  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Distinct variable group:    A, n, x

Proof of Theorem apbtwnz
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  A  e.  RR )
2 simpr 110 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  A  <  m
)  ->  A  <  m )
32olcd 735 . . . 4  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  A  <  m
)  ->  ( m  <_  A  \/  A  < 
m ) )
4 simpr 110 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  m  e.  ZZ )
54zred 9465 . . . . . . 7  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  m  e.  RR )
65adantr 276 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  m  e.  RR )
71adantr 276 . . . . . . 7  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  A  e.  RR )
87adantr 276 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  A  e.  RR )
9 simpr 110 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  m  <  A )
106, 8, 9ltled 8162 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  m  <_  A )
1110orcd 734 . . . 4  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  ( m  <_  A  \/  A  < 
m ) )
12 breq2 4038 . . . . . 6  |-  ( n  =  m  ->  ( A #  n  <->  A #  m )
)
13 simplr 528 . . . . . 6  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  A. n  e.  ZZ  A #  n )
1412, 13, 4rspcdva 2873 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  A #  m )
15 reaplt 8632 . . . . . 6  |-  ( ( A  e.  RR  /\  m  e.  RR )  ->  ( A #  m  <->  ( A  <  m  \/  m  < 
A ) ) )
167, 5, 15syl2anc 411 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  ( A #  m  <->  ( A  < 
m  \/  m  < 
A ) ) )
1714, 16mpbid 147 . . . 4  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  ( A  <  m  \/  m  <  A ) )
183, 11, 17mpjaodan 799 . . 3  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  (
m  <_  A  \/  A  <  m ) )
191, 18exbtwnzlemex 10356 . 2  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) )
2019, 1exbtwnz 10357 1  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    e. wcel 2167   A.wral 2475   E!wreu 2477   class class class wbr 4034  (class class class)co 5925   RRcr 7895   1c1 7897    + caddc 7899    < clt 8078    <_ cle 8079   # cap 8625   ZZcz 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-inn 9008  df-n0 9267  df-z 9344
This theorem is referenced by:  flapcl  10382
  Copyright terms: Public domain W3C validator