ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apbtwnz Unicode version

Theorem apbtwnz 10230
Description: There is a unique greatest integer less than or equal to a real number which is apart from all integers. (Contributed by Jim Kingdon, 11-May-2022.)
Assertion
Ref Expression
apbtwnz  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Distinct variable group:    A, n, x

Proof of Theorem apbtwnz
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  A  e.  RR )
2 simpr 109 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  A  <  m
)  ->  A  <  m )
32olcd 729 . . . 4  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  A  <  m
)  ->  ( m  <_  A  \/  A  < 
m ) )
4 simpr 109 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  m  e.  ZZ )
54zred 9334 . . . . . . 7  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  m  e.  RR )
65adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  m  e.  RR )
71adantr 274 . . . . . . 7  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  A  e.  RR )
87adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  A  e.  RR )
9 simpr 109 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  m  <  A )
106, 8, 9ltled 8038 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  m  <_  A )
1110orcd 728 . . . 4  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  ( m  <_  A  \/  A  < 
m ) )
12 breq2 3993 . . . . . 6  |-  ( n  =  m  ->  ( A #  n  <->  A #  m )
)
13 simplr 525 . . . . . 6  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  A. n  e.  ZZ  A #  n )
1412, 13, 4rspcdva 2839 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  A #  m )
15 reaplt 8507 . . . . . 6  |-  ( ( A  e.  RR  /\  m  e.  RR )  ->  ( A #  m  <->  ( A  <  m  \/  m  < 
A ) ) )
167, 5, 15syl2anc 409 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  ( A #  m  <->  ( A  < 
m  \/  m  < 
A ) ) )
1714, 16mpbid 146 . . . 4  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  ( A  <  m  \/  m  <  A ) )
183, 11, 17mpjaodan 793 . . 3  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  (
m  <_  A  \/  A  <  m ) )
191, 18exbtwnzlemex 10206 . 2  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) )
2019, 1exbtwnz 10207 1  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    e. wcel 2141   A.wral 2448   E!wreu 2450   class class class wbr 3989  (class class class)co 5853   RRcr 7773   1c1 7775    + caddc 7777    < clt 7954    <_ cle 7955   # cap 8500   ZZcz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-inn 8879  df-n0 9136  df-z 9213
This theorem is referenced by:  flapcl  10231
  Copyright terms: Public domain W3C validator