ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apbtwnz Unicode version

Theorem apbtwnz 10040
Description: There is a unique greatest integer less than or equal to a real number which is apart from all integers. (Contributed by Jim Kingdon, 11-May-2022.)
Assertion
Ref Expression
apbtwnz  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Distinct variable group:    A, n, x

Proof of Theorem apbtwnz
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  A  e.  RR )
2 simpr 109 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  A  <  m
)  ->  A  <  m )
32olcd 723 . . . 4  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  A  <  m
)  ->  ( m  <_  A  \/  A  < 
m ) )
4 simpr 109 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  m  e.  ZZ )
54zred 9166 . . . . . . 7  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  m  e.  RR )
65adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  m  e.  RR )
71adantr 274 . . . . . . 7  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  A  e.  RR )
87adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  A  e.  RR )
9 simpr 109 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  m  <  A )
106, 8, 9ltled 7874 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  m  <_  A )
1110orcd 722 . . . 4  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  ( m  <_  A  \/  A  < 
m ) )
12 breq2 3928 . . . . . 6  |-  ( n  =  m  ->  ( A #  n  <->  A #  m )
)
13 simplr 519 . . . . . 6  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  A. n  e.  ZZ  A #  n )
1412, 13, 4rspcdva 2789 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  A #  m )
15 reaplt 8343 . . . . . 6  |-  ( ( A  e.  RR  /\  m  e.  RR )  ->  ( A #  m  <->  ( A  <  m  \/  m  < 
A ) ) )
167, 5, 15syl2anc 408 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  ( A #  m  <->  ( A  < 
m  \/  m  < 
A ) ) )
1714, 16mpbid 146 . . . 4  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  ( A  <  m  \/  m  <  A ) )
183, 11, 17mpjaodan 787 . . 3  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  (
m  <_  A  \/  A  <  m ) )
191, 18exbtwnzlemex 10020 . 2  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) )
2019, 1exbtwnz 10021 1  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    e. wcel 1480   A.wral 2414   E!wreu 2416   class class class wbr 3924  (class class class)co 5767   RRcr 7612   1c1 7614    + caddc 7616    < clt 7793    <_ cle 7794   # cap 8336   ZZcz 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-arch 7732
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-inn 8714  df-n0 8971  df-z 9048
This theorem is referenced by:  flapcl  10041
  Copyright terms: Public domain W3C validator