ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apbtwnz Unicode version

Theorem apbtwnz 10166
Description: There is a unique greatest integer less than or equal to a real number which is apart from all integers. (Contributed by Jim Kingdon, 11-May-2022.)
Assertion
Ref Expression
apbtwnz  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Distinct variable group:    A, n, x

Proof of Theorem apbtwnz
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . 3  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  A  e.  RR )
2 simpr 109 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  A  <  m
)  ->  A  <  m )
32olcd 724 . . . 4  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  A  <  m
)  ->  ( m  <_  A  \/  A  < 
m ) )
4 simpr 109 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  m  e.  ZZ )
54zred 9280 . . . . . . 7  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  m  e.  RR )
65adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  m  e.  RR )
71adantr 274 . . . . . . 7  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  A  e.  RR )
87adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  A  e.  RR )
9 simpr 109 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  m  <  A )
106, 8, 9ltled 7988 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  m  <_  A )
1110orcd 723 . . . 4  |-  ( ( ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  /\  m  <  A
)  ->  ( m  <_  A  \/  A  < 
m ) )
12 breq2 3969 . . . . . 6  |-  ( n  =  m  ->  ( A #  n  <->  A #  m )
)
13 simplr 520 . . . . . 6  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  A. n  e.  ZZ  A #  n )
1412, 13, 4rspcdva 2821 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  A #  m )
15 reaplt 8457 . . . . . 6  |-  ( ( A  e.  RR  /\  m  e.  RR )  ->  ( A #  m  <->  ( A  <  m  \/  m  < 
A ) ) )
167, 5, 15syl2anc 409 . . . . 5  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  ( A #  m  <->  ( A  < 
m  \/  m  < 
A ) ) )
1714, 16mpbid 146 . . . 4  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  ( A  <  m  \/  m  <  A ) )
183, 11, 17mpjaodan 788 . . 3  |-  ( ( ( A  e.  RR  /\ 
A. n  e.  ZZ  A #  n )  /\  m  e.  ZZ )  ->  (
m  <_  A  \/  A  <  m ) )
191, 18exbtwnzlemex 10142 . 2  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) )
2019, 1exbtwnz 10143 1  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    e. wcel 2128   A.wral 2435   E!wreu 2437   class class class wbr 3965  (class class class)co 5821   RRcr 7725   1c1 7727    + caddc 7729    < clt 7906    <_ cle 7907   # cap 8450   ZZcz 9161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-arch 7845
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-inn 8828  df-n0 9085  df-z 9162
This theorem is referenced by:  flapcl  10167
  Copyright terms: Public domain W3C validator