ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzss1 GIF version

Theorem fzss1 9850
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzss1 (𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))

Proof of Theorem fzss1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfzuz 9809 . . . . 5 (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ𝐾))
2 id 19 . . . . 5 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ (ℤ𝑀))
3 uztrn 9349 . . . . 5 ((𝑘 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
41, 2, 3syl2anr 288 . . . 4 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ𝑀))
5 elfzuz3 9810 . . . . 5 (𝑘 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ𝑘))
65adantl 275 . . . 4 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ𝑘))
7 elfzuzb 9807 . . . 4 (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑘)))
84, 6, 7sylanbrc 413 . . 3 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
98ex 114 . 2 (𝐾 ∈ (ℤ𝑀) → (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (𝑀...𝑁)))
109ssrdv 3103 1 (𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1480  wss 3071  cfv 5123  (class class class)co 5774  cuz 9333  ...cfz 9797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-pre-ltwlin 7740
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-neg 7943  df-z 9062  df-uz 9334  df-fz 9798
This theorem is referenced by:  fzssnn  9855  fzp1ss  9860  ige2m1fz  9897  fzoss1  9955  fzossnn0  9959  ser3mono  10258  iseqf1olemnab  10268  bcpasc  10519  mertenslemi1  11311  structfn  11988  strleund  12057  strleun  12058
  Copyright terms: Public domain W3C validator