| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzss1 | GIF version | ||
| Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fzss1 | ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 10163 | . . . . 5 ⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ≥‘𝐾)) | |
| 2 | id 19 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
| 3 | uztrn 9685 | . . . . 5 ⊢ ((𝑘 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 4 | 1, 2, 3 | syl2anr 290 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 5 | elfzuz3 10164 | . . . . 5 ⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ≥‘𝑘)) | |
| 6 | 5 | adantl 277 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑘)) |
| 7 | elfzuzb 10161 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑘))) | |
| 8 | 4, 6, 7 | sylanbrc 417 | . . 3 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (𝑀...𝑁)) |
| 9 | 8 | ex 115 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (𝑀...𝑁))) |
| 10 | 9 | ssrdv 3203 | 1 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 ⊆ wss 3170 ‘cfv 5280 (class class class)co 5957 ℤ≥cuz 9668 ...cfz 10150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-pre-ltwlin 8058 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-neg 8266 df-z 9393 df-uz 9669 df-fz 10151 |
| This theorem is referenced by: fzssnn 10210 fzp1ss 10215 ige2m1fz 10252 fzoss1 10315 fzossnn0 10319 ser3mono 10654 seqsplitg 10656 iseqf1olemnab 10668 seqf1oglem2 10687 bcpasc 10933 swrdswrd 11181 mertenslemi1 11921 reumodprminv 12651 structfn 12926 strleund 13010 strleun 13011 ply1termlem 15289 dvply1 15312 gausslemma2dlem3 15615 2lgslem1a 15640 |
| Copyright terms: Public domain | W3C validator |