ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzval3 Unicode version

Theorem fzval3 9678
Description: Expressing a closed integer range as a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fzval3  |-  ( N  e.  ZZ  ->  ( M ... N )  =  ( M..^ ( N  +  1 ) ) )

Proof of Theorem fzval3
StepHypRef Expression
1 peano2z 8849 . . 3  |-  ( N  e.  ZZ  ->  ( N  +  1 )  e.  ZZ )
2 fzoval 9622 . . 3  |-  ( ( N  +  1 )  e.  ZZ  ->  ( M..^ ( N  +  1 ) )  =  ( M ... ( ( N  +  1 )  -  1 ) ) )
31, 2syl 14 . 2  |-  ( N  e.  ZZ  ->  ( M..^ ( N  +  1 ) )  =  ( M ... ( ( N  +  1 )  -  1 ) ) )
4 zcn 8818 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  CC )
5 ax-1cn 7501 . . . 4  |-  1  e.  CC
6 pncan 7751 . . . 4  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
74, 5, 6sylancl 405 . . 3  |-  ( N  e.  ZZ  ->  (
( N  +  1 )  -  1 )  =  N )
87oveq2d 5684 . 2  |-  ( N  e.  ZZ  ->  ( M ... ( ( N  +  1 )  - 
1 ) )  =  ( M ... N
) )
93, 8eqtr2d 2122 1  |-  ( N  e.  ZZ  ->  ( M ... N )  =  ( M..^ ( N  +  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290    e. wcel 1439  (class class class)co 5668   CCcc 7411   1c1 7414    + caddc 7416    - cmin 7716   ZZcz 8813   ...cfz 9487  ..^cfzo 9616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-addcom 7508  ax-addass 7510  ax-distr 7512  ax-i2m1 7513  ax-0lt1 7514  ax-0id 7516  ax-rnegex 7517  ax-cnre 7519  ax-pre-ltirr 7520  ax-pre-ltwlin 7521  ax-pre-lttrn 7522  ax-pre-ltadd 7524
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-iun 3740  df-br 3854  df-opab 3908  df-mpt 3909  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-1st 5927  df-2nd 5928  df-pnf 7587  df-mnf 7588  df-xr 7589  df-ltxr 7590  df-le 7591  df-sub 7718  df-neg 7719  df-inn 8486  df-n0 8737  df-z 8814  df-uz 9083  df-fz 9488  df-fzo 9617
This theorem is referenced by:  fzosn  9679  fzofzp1  9701  fzisfzounsn  9710  seq3f1olemp  9994  fzosump1  10874  telfsum  10925  telfsum2  10926  cvgratnnlemsumlt  10985
  Copyright terms: Public domain W3C validator