ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemsumlt Unicode version

Theorem cvgratnnlemsumlt 11425
Description: Lemma for cvgratnn 11428. (Contributed by Jim Kingdon, 23-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemsumlt  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) )  <  ( A  /  ( 1  -  A ) ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    A, i, k    i, M, k   
i, N    ph, i
Allowed substitution hint:    F( i)

Proof of Theorem cvgratnnlemsumlt
StepHypRef Expression
1 cvgratnn.m . . . . 5  |-  ( ph  ->  M  e.  NN )
21nnzd 9285 . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 1zzd 9194 . . . 4  |-  ( ph  ->  1  e.  ZZ )
4 cvgratnn.n . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 eluzelz 9448 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
64, 5syl 14 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
76, 2zsubcld 9291 . . . 4  |-  ( ph  ->  ( N  -  M
)  e.  ZZ )
8 cvgratnn.3 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
98recnd 7906 . . . . . 6  |-  ( ph  ->  A  e.  CC )
109adantr 274 . . . . 5  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  M )
) )  ->  A  e.  CC )
11 elfznn 9956 . . . . . . 7  |-  ( k  e.  ( 1 ... ( N  -  M
) )  ->  k  e.  NN )
1211adantl 275 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  M )
) )  ->  k  e.  NN )
1312nnnn0d 9143 . . . . 5  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  M )
) )  ->  k  e.  NN0 )
1410, 13expcld 10551 . . . 4  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  M )
) )  ->  ( A ^ k )  e.  CC )
15 oveq2 5832 . . . 4  |-  ( k  =  ( i  -  M )  ->  ( A ^ k )  =  ( A ^ (
i  -  M ) ) )
162, 3, 7, 14, 15fsumshft 11341 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( N  -  M ) ) ( A ^ k
)  =  sum_ i  e.  ( ( 1  +  M ) ... (
( N  -  M
)  +  M ) ) ( A ^
( i  -  M
) ) )
17 1cnd 7894 . . . . . 6  |-  ( ph  ->  1  e.  CC )
181nncnd 8847 . . . . . 6  |-  ( ph  ->  M  e.  CC )
1917, 18addcomd 8026 . . . . 5  |-  ( ph  ->  ( 1  +  M
)  =  ( M  +  1 ) )
206zcnd 9287 . . . . . 6  |-  ( ph  ->  N  e.  CC )
2120, 18npcand 8190 . . . . 5  |-  ( ph  ->  ( ( N  -  M )  +  M
)  =  N )
2219, 21oveq12d 5842 . . . 4  |-  ( ph  ->  ( ( 1  +  M ) ... (
( N  -  M
)  +  M ) )  =  ( ( M  +  1 ) ... N ) )
2322sumeq1d 11263 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( 1  +  M
) ... ( ( N  -  M )  +  M ) ) ( A ^ ( i  -  M ) )  =  sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) )
2416, 23eqtrd 2190 . 2  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( N  -  M ) ) ( A ^ k
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )
25 fzval3 10103 . . . . 5  |-  ( ( N  -  M )  e.  ZZ  ->  (
1 ... ( N  -  M ) )  =  ( 1..^ ( ( N  -  M )  +  1 ) ) )
2625sumeq1d 11263 . . . 4  |-  ( ( N  -  M )  e.  ZZ  ->  sum_ k  e.  ( 1 ... ( N  -  M )
) ( A ^
k )  =  sum_ k  e.  ( 1..^ ( ( N  -  M )  +  1 ) ) ( A ^ k ) )
277, 26syl 14 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( N  -  M ) ) ( A ^ k
)  =  sum_ k  e.  ( 1..^ ( ( N  -  M )  +  1 ) ) ( A ^ k
) )
28 1red 7893 . . . . . 6  |-  ( ph  ->  1  e.  RR )
29 cvgratnn.4 . . . . . 6  |-  ( ph  ->  A  <  1 )
308, 28, 29ltapd 8513 . . . . 5  |-  ( ph  ->  A #  1 )
31 1nn0 9106 . . . . . 6  |-  1  e.  NN0
3231a1i 9 . . . . 5  |-  ( ph  ->  1  e.  NN0 )
337peano2zd 9289 . . . . . 6  |-  ( ph  ->  ( ( N  -  M )  +  1 )  e.  ZZ )
34 eluzle 9451 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
354, 34syl 14 . . . . . . . 8  |-  ( ph  ->  M  <_  N )
366zred 9286 . . . . . . . . 9  |-  ( ph  ->  N  e.  RR )
371nnred 8846 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
3836, 37subge0d 8410 . . . . . . . 8  |-  ( ph  ->  ( 0  <_  ( N  -  M )  <->  M  <_  N ) )
3935, 38mpbird 166 . . . . . . 7  |-  ( ph  ->  0  <_  ( N  -  M ) )
407zred 9286 . . . . . . . 8  |-  ( ph  ->  ( N  -  M
)  e.  RR )
4128, 40addge02d 8409 . . . . . . 7  |-  ( ph  ->  ( 0  <_  ( N  -  M )  <->  1  <_  ( ( N  -  M )  +  1 ) ) )
4239, 41mpbid 146 . . . . . 6  |-  ( ph  ->  1  <_  ( ( N  -  M )  +  1 ) )
43 eluz2 9445 . . . . . 6  |-  ( ( ( N  -  M
)  +  1 )  e.  ( ZZ>= `  1
)  <->  ( 1  e.  ZZ  /\  ( ( N  -  M )  +  1 )  e.  ZZ  /\  1  <_ 
( ( N  -  M )  +  1 ) ) )
443, 33, 42, 43syl3anbrc 1166 . . . . 5  |-  ( ph  ->  ( ( N  -  M )  +  1 )  e.  ( ZZ>= ` 
1 ) )
459, 30, 32, 44geosergap 11403 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( 1..^ ( ( N  -  M )  +  1 ) ) ( A ^ k )  =  ( ( ( A ^ 1 )  -  ( A ^
( ( N  -  M )  +  1 ) ) )  / 
( 1  -  A
) ) )
469exp1d 10546 . . . . . . 7  |-  ( ph  ->  ( A ^ 1 )  =  A )
4746, 8eqeltrd 2234 . . . . . 6  |-  ( ph  ->  ( A ^ 1 )  e.  RR )
48 cvgratnn.gt0 . . . . . . . . 9  |-  ( ph  ->  0  <  A )
498, 48elrpd 9600 . . . . . . . 8  |-  ( ph  ->  A  e.  RR+ )
5049, 33rpexpcld 10575 . . . . . . 7  |-  ( ph  ->  ( A ^ (
( N  -  M
)  +  1 ) )  e.  RR+ )
5150rpred 9603 . . . . . 6  |-  ( ph  ->  ( A ^ (
( N  -  M
)  +  1 ) )  e.  RR )
5247, 51resubcld 8256 . . . . 5  |-  ( ph  ->  ( ( A ^
1 )  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  e.  RR )
5328, 8resubcld 8256 . . . . . 6  |-  ( ph  ->  ( 1  -  A
)  e.  RR )
548, 28posdifd 8407 . . . . . . 7  |-  ( ph  ->  ( A  <  1  <->  0  <  ( 1  -  A ) ) )
5529, 54mpbid 146 . . . . . 6  |-  ( ph  ->  0  <  ( 1  -  A ) )
5653, 55elrpd 9600 . . . . 5  |-  ( ph  ->  ( 1  -  A
)  e.  RR+ )
5746oveq1d 5839 . . . . . 6  |-  ( ph  ->  ( ( A ^
1 )  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  =  ( A  -  ( A ^ ( ( N  -  M )  +  1 ) ) ) )
588, 50ltsubrpd 9636 . . . . . 6  |-  ( ph  ->  ( A  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  <  A )
5957, 58eqbrtrd 3986 . . . . 5  |-  ( ph  ->  ( ( A ^
1 )  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  <  A )
6052, 8, 56, 59ltdiv1dd 9661 . . . 4  |-  ( ph  ->  ( ( ( A ^ 1 )  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  /  ( 1  -  A ) )  <  ( A  / 
( 1  -  A
) ) )
6145, 60eqbrtrd 3986 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 1..^ ( ( N  -  M )  +  1 ) ) ( A ^ k )  <  ( A  / 
( 1  -  A
) ) )
6227, 61eqbrtrd 3986 . 2  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( N  -  M ) ) ( A ^ k
)  <  ( A  /  ( 1  -  A ) ) )
6324, 62eqbrtrrd 3988 1  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) )  <  ( A  /  ( 1  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   class class class wbr 3965   ` cfv 5170  (class class class)co 5824   CCcc 7730   RRcr 7731   0cc0 7732   1c1 7733    + caddc 7735    x. cmul 7737    < clt 7912    <_ cle 7913    - cmin 8046    / cdiv 8545   NNcn 8833   NN0cn0 9090   ZZcz 9167   ZZ>=cuz 9439   ...cfz 9912  ..^cfzo 10041   ^cexp 10418   abscabs 10897   sum_csu 11250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850  ax-arch 7851  ax-caucvg 7852
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-isom 5179  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-irdg 6317  df-frec 6338  df-1o 6363  df-oadd 6367  df-er 6480  df-en 6686  df-dom 6687  df-fin 6688  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-inn 8834  df-2 8892  df-3 8893  df-4 8894  df-n0 9091  df-z 9168  df-uz 9440  df-q 9529  df-rp 9561  df-fz 9913  df-fzo 10042  df-seqfrec 10345  df-exp 10419  df-ihash 10650  df-cj 10742  df-re 10743  df-im 10744  df-rsqrt 10898  df-abs 10899  df-clim 11176  df-sumdc 11251
This theorem is referenced by:  cvgratnnlemrate  11427
  Copyright terms: Public domain W3C validator