ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemsumlt Unicode version

Theorem cvgratnnlemsumlt 11674
Description: Lemma for cvgratnn 11677. (Contributed by Jim Kingdon, 23-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemsumlt  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) )  <  ( A  /  ( 1  -  A ) ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    A, i, k    i, M, k   
i, N    ph, i
Allowed substitution hint:    F( i)

Proof of Theorem cvgratnnlemsumlt
StepHypRef Expression
1 cvgratnn.m . . . . 5  |-  ( ph  ->  M  e.  NN )
21nnzd 9441 . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 1zzd 9347 . . . 4  |-  ( ph  ->  1  e.  ZZ )
4 cvgratnn.n . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 eluzelz 9604 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
64, 5syl 14 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
76, 2zsubcld 9447 . . . 4  |-  ( ph  ->  ( N  -  M
)  e.  ZZ )
8 cvgratnn.3 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
98recnd 8050 . . . . . 6  |-  ( ph  ->  A  e.  CC )
109adantr 276 . . . . 5  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  M )
) )  ->  A  e.  CC )
11 elfznn 10123 . . . . . . 7  |-  ( k  e.  ( 1 ... ( N  -  M
) )  ->  k  e.  NN )
1211adantl 277 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  M )
) )  ->  k  e.  NN )
1312nnnn0d 9296 . . . . 5  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  M )
) )  ->  k  e.  NN0 )
1410, 13expcld 10747 . . . 4  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  M )
) )  ->  ( A ^ k )  e.  CC )
15 oveq2 5927 . . . 4  |-  ( k  =  ( i  -  M )  ->  ( A ^ k )  =  ( A ^ (
i  -  M ) ) )
162, 3, 7, 14, 15fsumshft 11590 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( N  -  M ) ) ( A ^ k
)  =  sum_ i  e.  ( ( 1  +  M ) ... (
( N  -  M
)  +  M ) ) ( A ^
( i  -  M
) ) )
17 1cnd 8037 . . . . . 6  |-  ( ph  ->  1  e.  CC )
181nncnd 8998 . . . . . 6  |-  ( ph  ->  M  e.  CC )
1917, 18addcomd 8172 . . . . 5  |-  ( ph  ->  ( 1  +  M
)  =  ( M  +  1 ) )
206zcnd 9443 . . . . . 6  |-  ( ph  ->  N  e.  CC )
2120, 18npcand 8336 . . . . 5  |-  ( ph  ->  ( ( N  -  M )  +  M
)  =  N )
2219, 21oveq12d 5937 . . . 4  |-  ( ph  ->  ( ( 1  +  M ) ... (
( N  -  M
)  +  M ) )  =  ( ( M  +  1 ) ... N ) )
2322sumeq1d 11512 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( 1  +  M
) ... ( ( N  -  M )  +  M ) ) ( A ^ ( i  -  M ) )  =  sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) )
2416, 23eqtrd 2226 . 2  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( N  -  M ) ) ( A ^ k
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )
25 fzval3 10274 . . . . 5  |-  ( ( N  -  M )  e.  ZZ  ->  (
1 ... ( N  -  M ) )  =  ( 1..^ ( ( N  -  M )  +  1 ) ) )
2625sumeq1d 11512 . . . 4  |-  ( ( N  -  M )  e.  ZZ  ->  sum_ k  e.  ( 1 ... ( N  -  M )
) ( A ^
k )  =  sum_ k  e.  ( 1..^ ( ( N  -  M )  +  1 ) ) ( A ^ k ) )
277, 26syl 14 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( N  -  M ) ) ( A ^ k
)  =  sum_ k  e.  ( 1..^ ( ( N  -  M )  +  1 ) ) ( A ^ k
) )
28 1red 8036 . . . . . 6  |-  ( ph  ->  1  e.  RR )
29 cvgratnn.4 . . . . . 6  |-  ( ph  ->  A  <  1 )
308, 28, 29ltapd 8659 . . . . 5  |-  ( ph  ->  A #  1 )
31 1nn0 9259 . . . . . 6  |-  1  e.  NN0
3231a1i 9 . . . . 5  |-  ( ph  ->  1  e.  NN0 )
337peano2zd 9445 . . . . . 6  |-  ( ph  ->  ( ( N  -  M )  +  1 )  e.  ZZ )
34 eluzle 9607 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
354, 34syl 14 . . . . . . . 8  |-  ( ph  ->  M  <_  N )
366zred 9442 . . . . . . . . 9  |-  ( ph  ->  N  e.  RR )
371nnred 8997 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
3836, 37subge0d 8556 . . . . . . . 8  |-  ( ph  ->  ( 0  <_  ( N  -  M )  <->  M  <_  N ) )
3935, 38mpbird 167 . . . . . . 7  |-  ( ph  ->  0  <_  ( N  -  M ) )
407zred 9442 . . . . . . . 8  |-  ( ph  ->  ( N  -  M
)  e.  RR )
4128, 40addge02d 8555 . . . . . . 7  |-  ( ph  ->  ( 0  <_  ( N  -  M )  <->  1  <_  ( ( N  -  M )  +  1 ) ) )
4239, 41mpbid 147 . . . . . 6  |-  ( ph  ->  1  <_  ( ( N  -  M )  +  1 ) )
43 eluz2 9601 . . . . . 6  |-  ( ( ( N  -  M
)  +  1 )  e.  ( ZZ>= `  1
)  <->  ( 1  e.  ZZ  /\  ( ( N  -  M )  +  1 )  e.  ZZ  /\  1  <_ 
( ( N  -  M )  +  1 ) ) )
443, 33, 42, 43syl3anbrc 1183 . . . . 5  |-  ( ph  ->  ( ( N  -  M )  +  1 )  e.  ( ZZ>= ` 
1 ) )
459, 30, 32, 44geosergap 11652 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( 1..^ ( ( N  -  M )  +  1 ) ) ( A ^ k )  =  ( ( ( A ^ 1 )  -  ( A ^
( ( N  -  M )  +  1 ) ) )  / 
( 1  -  A
) ) )
469exp1d 10742 . . . . . . 7  |-  ( ph  ->  ( A ^ 1 )  =  A )
4746, 8eqeltrd 2270 . . . . . 6  |-  ( ph  ->  ( A ^ 1 )  e.  RR )
48 cvgratnn.gt0 . . . . . . . . 9  |-  ( ph  ->  0  <  A )
498, 48elrpd 9762 . . . . . . . 8  |-  ( ph  ->  A  e.  RR+ )
5049, 33rpexpcld 10771 . . . . . . 7  |-  ( ph  ->  ( A ^ (
( N  -  M
)  +  1 ) )  e.  RR+ )
5150rpred 9765 . . . . . 6  |-  ( ph  ->  ( A ^ (
( N  -  M
)  +  1 ) )  e.  RR )
5247, 51resubcld 8402 . . . . 5  |-  ( ph  ->  ( ( A ^
1 )  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  e.  RR )
5328, 8resubcld 8402 . . . . . 6  |-  ( ph  ->  ( 1  -  A
)  e.  RR )
548, 28posdifd 8553 . . . . . . 7  |-  ( ph  ->  ( A  <  1  <->  0  <  ( 1  -  A ) ) )
5529, 54mpbid 147 . . . . . 6  |-  ( ph  ->  0  <  ( 1  -  A ) )
5653, 55elrpd 9762 . . . . 5  |-  ( ph  ->  ( 1  -  A
)  e.  RR+ )
5746oveq1d 5934 . . . . . 6  |-  ( ph  ->  ( ( A ^
1 )  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  =  ( A  -  ( A ^ ( ( N  -  M )  +  1 ) ) ) )
588, 50ltsubrpd 9798 . . . . . 6  |-  ( ph  ->  ( A  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  <  A )
5957, 58eqbrtrd 4052 . . . . 5  |-  ( ph  ->  ( ( A ^
1 )  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  <  A )
6052, 8, 56, 59ltdiv1dd 9823 . . . 4  |-  ( ph  ->  ( ( ( A ^ 1 )  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  /  ( 1  -  A ) )  <  ( A  / 
( 1  -  A
) ) )
6145, 60eqbrtrd 4052 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 1..^ ( ( N  -  M )  +  1 ) ) ( A ^ k )  <  ( A  / 
( 1  -  A
) ) )
6227, 61eqbrtrd 4052 . 2  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( N  -  M ) ) ( A ^ k
)  <  ( A  /  ( 1  -  A ) ) )
6324, 62eqbrtrrd 4054 1  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) )  <  ( A  /  ( 1  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    < clt 8056    <_ cle 8057    - cmin 8192    / cdiv 8693   NNcn 8984   NN0cn0 9243   ZZcz 9320   ZZ>=cuz 9595   ...cfz 10077  ..^cfzo 10211   ^cexp 10612   abscabs 11144   sum_csu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by:  cvgratnnlemrate  11676
  Copyright terms: Public domain W3C validator