ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemsumlt Unicode version

Theorem cvgratnnlemsumlt 11839
Description: Lemma for cvgratnn 11842. (Contributed by Jim Kingdon, 23-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemsumlt  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) )  <  ( A  /  ( 1  -  A ) ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    A, i, k    i, M, k   
i, N    ph, i
Allowed substitution hint:    F( i)

Proof of Theorem cvgratnnlemsumlt
StepHypRef Expression
1 cvgratnn.m . . . . 5  |-  ( ph  ->  M  e.  NN )
21nnzd 9494 . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 1zzd 9399 . . . 4  |-  ( ph  ->  1  e.  ZZ )
4 cvgratnn.n . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 eluzelz 9657 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
64, 5syl 14 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
76, 2zsubcld 9500 . . . 4  |-  ( ph  ->  ( N  -  M
)  e.  ZZ )
8 cvgratnn.3 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
98recnd 8101 . . . . . 6  |-  ( ph  ->  A  e.  CC )
109adantr 276 . . . . 5  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  M )
) )  ->  A  e.  CC )
11 elfznn 10176 . . . . . . 7  |-  ( k  e.  ( 1 ... ( N  -  M
) )  ->  k  e.  NN )
1211adantl 277 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  M )
) )  ->  k  e.  NN )
1312nnnn0d 9348 . . . . 5  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  M )
) )  ->  k  e.  NN0 )
1410, 13expcld 10818 . . . 4  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  M )
) )  ->  ( A ^ k )  e.  CC )
15 oveq2 5952 . . . 4  |-  ( k  =  ( i  -  M )  ->  ( A ^ k )  =  ( A ^ (
i  -  M ) ) )
162, 3, 7, 14, 15fsumshft 11755 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( N  -  M ) ) ( A ^ k
)  =  sum_ i  e.  ( ( 1  +  M ) ... (
( N  -  M
)  +  M ) ) ( A ^
( i  -  M
) ) )
17 1cnd 8088 . . . . . 6  |-  ( ph  ->  1  e.  CC )
181nncnd 9050 . . . . . 6  |-  ( ph  ->  M  e.  CC )
1917, 18addcomd 8223 . . . . 5  |-  ( ph  ->  ( 1  +  M
)  =  ( M  +  1 ) )
206zcnd 9496 . . . . . 6  |-  ( ph  ->  N  e.  CC )
2120, 18npcand 8387 . . . . 5  |-  ( ph  ->  ( ( N  -  M )  +  M
)  =  N )
2219, 21oveq12d 5962 . . . 4  |-  ( ph  ->  ( ( 1  +  M ) ... (
( N  -  M
)  +  M ) )  =  ( ( M  +  1 ) ... N ) )
2322sumeq1d 11677 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( 1  +  M
) ... ( ( N  -  M )  +  M ) ) ( A ^ ( i  -  M ) )  =  sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) )
2416, 23eqtrd 2238 . 2  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( N  -  M ) ) ( A ^ k
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )
25 fzval3 10333 . . . . 5  |-  ( ( N  -  M )  e.  ZZ  ->  (
1 ... ( N  -  M ) )  =  ( 1..^ ( ( N  -  M )  +  1 ) ) )
2625sumeq1d 11677 . . . 4  |-  ( ( N  -  M )  e.  ZZ  ->  sum_ k  e.  ( 1 ... ( N  -  M )
) ( A ^
k )  =  sum_ k  e.  ( 1..^ ( ( N  -  M )  +  1 ) ) ( A ^ k ) )
277, 26syl 14 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( N  -  M ) ) ( A ^ k
)  =  sum_ k  e.  ( 1..^ ( ( N  -  M )  +  1 ) ) ( A ^ k
) )
28 1red 8087 . . . . . 6  |-  ( ph  ->  1  e.  RR )
29 cvgratnn.4 . . . . . 6  |-  ( ph  ->  A  <  1 )
308, 28, 29ltapd 8711 . . . . 5  |-  ( ph  ->  A #  1 )
31 1nn0 9311 . . . . . 6  |-  1  e.  NN0
3231a1i 9 . . . . 5  |-  ( ph  ->  1  e.  NN0 )
337peano2zd 9498 . . . . . 6  |-  ( ph  ->  ( ( N  -  M )  +  1 )  e.  ZZ )
34 eluzle 9660 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
354, 34syl 14 . . . . . . . 8  |-  ( ph  ->  M  <_  N )
366zred 9495 . . . . . . . . 9  |-  ( ph  ->  N  e.  RR )
371nnred 9049 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
3836, 37subge0d 8608 . . . . . . . 8  |-  ( ph  ->  ( 0  <_  ( N  -  M )  <->  M  <_  N ) )
3935, 38mpbird 167 . . . . . . 7  |-  ( ph  ->  0  <_  ( N  -  M ) )
407zred 9495 . . . . . . . 8  |-  ( ph  ->  ( N  -  M
)  e.  RR )
4128, 40addge02d 8607 . . . . . . 7  |-  ( ph  ->  ( 0  <_  ( N  -  M )  <->  1  <_  ( ( N  -  M )  +  1 ) ) )
4239, 41mpbid 147 . . . . . 6  |-  ( ph  ->  1  <_  ( ( N  -  M )  +  1 ) )
43 eluz2 9654 . . . . . 6  |-  ( ( ( N  -  M
)  +  1 )  e.  ( ZZ>= `  1
)  <->  ( 1  e.  ZZ  /\  ( ( N  -  M )  +  1 )  e.  ZZ  /\  1  <_ 
( ( N  -  M )  +  1 ) ) )
443, 33, 42, 43syl3anbrc 1184 . . . . 5  |-  ( ph  ->  ( ( N  -  M )  +  1 )  e.  ( ZZ>= ` 
1 ) )
459, 30, 32, 44geosergap 11817 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( 1..^ ( ( N  -  M )  +  1 ) ) ( A ^ k )  =  ( ( ( A ^ 1 )  -  ( A ^
( ( N  -  M )  +  1 ) ) )  / 
( 1  -  A
) ) )
469exp1d 10813 . . . . . . 7  |-  ( ph  ->  ( A ^ 1 )  =  A )
4746, 8eqeltrd 2282 . . . . . 6  |-  ( ph  ->  ( A ^ 1 )  e.  RR )
48 cvgratnn.gt0 . . . . . . . . 9  |-  ( ph  ->  0  <  A )
498, 48elrpd 9815 . . . . . . . 8  |-  ( ph  ->  A  e.  RR+ )
5049, 33rpexpcld 10842 . . . . . . 7  |-  ( ph  ->  ( A ^ (
( N  -  M
)  +  1 ) )  e.  RR+ )
5150rpred 9818 . . . . . 6  |-  ( ph  ->  ( A ^ (
( N  -  M
)  +  1 ) )  e.  RR )
5247, 51resubcld 8453 . . . . 5  |-  ( ph  ->  ( ( A ^
1 )  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  e.  RR )
5328, 8resubcld 8453 . . . . . 6  |-  ( ph  ->  ( 1  -  A
)  e.  RR )
548, 28posdifd 8605 . . . . . . 7  |-  ( ph  ->  ( A  <  1  <->  0  <  ( 1  -  A ) ) )
5529, 54mpbid 147 . . . . . 6  |-  ( ph  ->  0  <  ( 1  -  A ) )
5653, 55elrpd 9815 . . . . 5  |-  ( ph  ->  ( 1  -  A
)  e.  RR+ )
5746oveq1d 5959 . . . . . 6  |-  ( ph  ->  ( ( A ^
1 )  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  =  ( A  -  ( A ^ ( ( N  -  M )  +  1 ) ) ) )
588, 50ltsubrpd 9851 . . . . . 6  |-  ( ph  ->  ( A  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  <  A )
5957, 58eqbrtrd 4066 . . . . 5  |-  ( ph  ->  ( ( A ^
1 )  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  <  A )
6052, 8, 56, 59ltdiv1dd 9876 . . . 4  |-  ( ph  ->  ( ( ( A ^ 1 )  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  /  ( 1  -  A ) )  <  ( A  / 
( 1  -  A
) ) )
6145, 60eqbrtrd 4066 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 1..^ ( ( N  -  M )  +  1 ) ) ( A ^ k )  <  ( A  / 
( 1  -  A
) ) )
6227, 61eqbrtrd 4066 . 2  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( N  -  M ) ) ( A ^ k
)  <  ( A  /  ( 1  -  A ) ) )
6324, 62eqbrtrrd 4068 1  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) )  <  ( A  /  ( 1  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    + caddc 7928    x. cmul 7930    < clt 8107    <_ cle 8108    - cmin 8243    / cdiv 8745   NNcn 9036   NN0cn0 9295   ZZcz 9372   ZZ>=cuz 9648   ...cfz 10130  ..^cfzo 10264   ^cexp 10683   abscabs 11308   sum_csu 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-sumdc 11665
This theorem is referenced by:  cvgratnnlemrate  11841
  Copyright terms: Public domain W3C validator