ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemsumlt Unicode version

Theorem cvgratnnlemsumlt 11538
Description: Lemma for cvgratnn 11541. (Contributed by Jim Kingdon, 23-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemsumlt  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) )  <  ( A  /  ( 1  -  A ) ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    A, i, k    i, M, k   
i, N    ph, i
Allowed substitution hint:    F( i)

Proof of Theorem cvgratnnlemsumlt
StepHypRef Expression
1 cvgratnn.m . . . . 5  |-  ( ph  ->  M  e.  NN )
21nnzd 9376 . . . 4  |-  ( ph  ->  M  e.  ZZ )
3 1zzd 9282 . . . 4  |-  ( ph  ->  1  e.  ZZ )
4 cvgratnn.n . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 eluzelz 9539 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
64, 5syl 14 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
76, 2zsubcld 9382 . . . 4  |-  ( ph  ->  ( N  -  M
)  e.  ZZ )
8 cvgratnn.3 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
98recnd 7988 . . . . . 6  |-  ( ph  ->  A  e.  CC )
109adantr 276 . . . . 5  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  M )
) )  ->  A  e.  CC )
11 elfznn 10056 . . . . . . 7  |-  ( k  e.  ( 1 ... ( N  -  M
) )  ->  k  e.  NN )
1211adantl 277 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  M )
) )  ->  k  e.  NN )
1312nnnn0d 9231 . . . . 5  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  M )
) )  ->  k  e.  NN0 )
1410, 13expcld 10656 . . . 4  |-  ( (
ph  /\  k  e.  ( 1 ... ( N  -  M )
) )  ->  ( A ^ k )  e.  CC )
15 oveq2 5885 . . . 4  |-  ( k  =  ( i  -  M )  ->  ( A ^ k )  =  ( A ^ (
i  -  M ) ) )
162, 3, 7, 14, 15fsumshft 11454 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( N  -  M ) ) ( A ^ k
)  =  sum_ i  e.  ( ( 1  +  M ) ... (
( N  -  M
)  +  M ) ) ( A ^
( i  -  M
) ) )
17 1cnd 7975 . . . . . 6  |-  ( ph  ->  1  e.  CC )
181nncnd 8935 . . . . . 6  |-  ( ph  ->  M  e.  CC )
1917, 18addcomd 8110 . . . . 5  |-  ( ph  ->  ( 1  +  M
)  =  ( M  +  1 ) )
206zcnd 9378 . . . . . 6  |-  ( ph  ->  N  e.  CC )
2120, 18npcand 8274 . . . . 5  |-  ( ph  ->  ( ( N  -  M )  +  M
)  =  N )
2219, 21oveq12d 5895 . . . 4  |-  ( ph  ->  ( ( 1  +  M ) ... (
( N  -  M
)  +  M ) )  =  ( ( M  +  1 ) ... N ) )
2322sumeq1d 11376 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( 1  +  M
) ... ( ( N  -  M )  +  M ) ) ( A ^ ( i  -  M ) )  =  sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) )
2416, 23eqtrd 2210 . 2  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( N  -  M ) ) ( A ^ k
)  =  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )
25 fzval3 10206 . . . . 5  |-  ( ( N  -  M )  e.  ZZ  ->  (
1 ... ( N  -  M ) )  =  ( 1..^ ( ( N  -  M )  +  1 ) ) )
2625sumeq1d 11376 . . . 4  |-  ( ( N  -  M )  e.  ZZ  ->  sum_ k  e.  ( 1 ... ( N  -  M )
) ( A ^
k )  =  sum_ k  e.  ( 1..^ ( ( N  -  M )  +  1 ) ) ( A ^ k ) )
277, 26syl 14 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( N  -  M ) ) ( A ^ k
)  =  sum_ k  e.  ( 1..^ ( ( N  -  M )  +  1 ) ) ( A ^ k
) )
28 1red 7974 . . . . . 6  |-  ( ph  ->  1  e.  RR )
29 cvgratnn.4 . . . . . 6  |-  ( ph  ->  A  <  1 )
308, 28, 29ltapd 8597 . . . . 5  |-  ( ph  ->  A #  1 )
31 1nn0 9194 . . . . . 6  |-  1  e.  NN0
3231a1i 9 . . . . 5  |-  ( ph  ->  1  e.  NN0 )
337peano2zd 9380 . . . . . 6  |-  ( ph  ->  ( ( N  -  M )  +  1 )  e.  ZZ )
34 eluzle 9542 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
354, 34syl 14 . . . . . . . 8  |-  ( ph  ->  M  <_  N )
366zred 9377 . . . . . . . . 9  |-  ( ph  ->  N  e.  RR )
371nnred 8934 . . . . . . . . 9  |-  ( ph  ->  M  e.  RR )
3836, 37subge0d 8494 . . . . . . . 8  |-  ( ph  ->  ( 0  <_  ( N  -  M )  <->  M  <_  N ) )
3935, 38mpbird 167 . . . . . . 7  |-  ( ph  ->  0  <_  ( N  -  M ) )
407zred 9377 . . . . . . . 8  |-  ( ph  ->  ( N  -  M
)  e.  RR )
4128, 40addge02d 8493 . . . . . . 7  |-  ( ph  ->  ( 0  <_  ( N  -  M )  <->  1  <_  ( ( N  -  M )  +  1 ) ) )
4239, 41mpbid 147 . . . . . 6  |-  ( ph  ->  1  <_  ( ( N  -  M )  +  1 ) )
43 eluz2 9536 . . . . . 6  |-  ( ( ( N  -  M
)  +  1 )  e.  ( ZZ>= `  1
)  <->  ( 1  e.  ZZ  /\  ( ( N  -  M )  +  1 )  e.  ZZ  /\  1  <_ 
( ( N  -  M )  +  1 ) ) )
443, 33, 42, 43syl3anbrc 1181 . . . . 5  |-  ( ph  ->  ( ( N  -  M )  +  1 )  e.  ( ZZ>= ` 
1 ) )
459, 30, 32, 44geosergap 11516 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( 1..^ ( ( N  -  M )  +  1 ) ) ( A ^ k )  =  ( ( ( A ^ 1 )  -  ( A ^
( ( N  -  M )  +  1 ) ) )  / 
( 1  -  A
) ) )
469exp1d 10651 . . . . . . 7  |-  ( ph  ->  ( A ^ 1 )  =  A )
4746, 8eqeltrd 2254 . . . . . 6  |-  ( ph  ->  ( A ^ 1 )  e.  RR )
48 cvgratnn.gt0 . . . . . . . . 9  |-  ( ph  ->  0  <  A )
498, 48elrpd 9695 . . . . . . . 8  |-  ( ph  ->  A  e.  RR+ )
5049, 33rpexpcld 10680 . . . . . . 7  |-  ( ph  ->  ( A ^ (
( N  -  M
)  +  1 ) )  e.  RR+ )
5150rpred 9698 . . . . . 6  |-  ( ph  ->  ( A ^ (
( N  -  M
)  +  1 ) )  e.  RR )
5247, 51resubcld 8340 . . . . 5  |-  ( ph  ->  ( ( A ^
1 )  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  e.  RR )
5328, 8resubcld 8340 . . . . . 6  |-  ( ph  ->  ( 1  -  A
)  e.  RR )
548, 28posdifd 8491 . . . . . . 7  |-  ( ph  ->  ( A  <  1  <->  0  <  ( 1  -  A ) ) )
5529, 54mpbid 147 . . . . . 6  |-  ( ph  ->  0  <  ( 1  -  A ) )
5653, 55elrpd 9695 . . . . 5  |-  ( ph  ->  ( 1  -  A
)  e.  RR+ )
5746oveq1d 5892 . . . . . 6  |-  ( ph  ->  ( ( A ^
1 )  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  =  ( A  -  ( A ^ ( ( N  -  M )  +  1 ) ) ) )
588, 50ltsubrpd 9731 . . . . . 6  |-  ( ph  ->  ( A  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  <  A )
5957, 58eqbrtrd 4027 . . . . 5  |-  ( ph  ->  ( ( A ^
1 )  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  <  A )
6052, 8, 56, 59ltdiv1dd 9756 . . . 4  |-  ( ph  ->  ( ( ( A ^ 1 )  -  ( A ^ ( ( N  -  M )  +  1 ) ) )  /  ( 1  -  A ) )  <  ( A  / 
( 1  -  A
) ) )
6145, 60eqbrtrd 4027 . . 3  |-  ( ph  -> 
sum_ k  e.  ( 1..^ ( ( N  -  M )  +  1 ) ) ( A ^ k )  <  ( A  / 
( 1  -  A
) ) )
6227, 61eqbrtrd 4027 . 2  |-  ( ph  -> 
sum_ k  e.  ( 1 ... ( N  -  M ) ) ( A ^ k
)  <  ( A  /  ( 1  -  A ) ) )
6324, 62eqbrtrrd 4029 1  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) )  <  ( A  /  ( 1  -  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818    < clt 7994    <_ cle 7995    - cmin 8130    / cdiv 8631   NNcn 8921   NN0cn0 9178   ZZcz 9255   ZZ>=cuz 9530   ...cfz 10010  ..^cfzo 10144   ^cexp 10521   abscabs 11008   sum_csu 11363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364
This theorem is referenced by:  cvgratnnlemrate  11540
  Copyright terms: Public domain W3C validator