ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmsub Unicode version

Theorem ghmsub 13324
Description: Linearity of subtraction through a group homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmsub.b  |-  B  =  ( Base `  S
)
ghmsub.m  |-  .-  =  ( -g `  S )
ghmsub.n  |-  N  =  ( -g `  T
)
Assertion
Ref Expression
ghmsub  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( U  .-  V ) )  =  ( ( F `  U ) N ( F `  V ) ) )

Proof of Theorem ghmsub
StepHypRef Expression
1 ghmgrp1 13318 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
213ad2ant1 1020 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  S  e.  Grp )
3 simp3 1001 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  V  e.  B )
4 ghmsub.b . . . . . 6  |-  B  =  ( Base `  S
)
5 eqid 2193 . . . . . 6  |-  ( invg `  S )  =  ( invg `  S )
64, 5grpinvcl 13123 . . . . 5  |-  ( ( S  e.  Grp  /\  V  e.  B )  ->  ( ( invg `  S ) `  V
)  e.  B )
72, 3, 6syl2anc 411 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( invg `  S ) `  V
)  e.  B )
8 eqid 2193 . . . . 5  |-  ( +g  `  S )  =  ( +g  `  S )
9 eqid 2193 . . . . 5  |-  ( +g  `  T )  =  ( +g  `  T )
104, 8, 9ghmlin 13321 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  (
( invg `  S ) `  V
)  e.  B )  ->  ( F `  ( U ( +g  `  S
) ( ( invg `  S ) `
 V ) ) )  =  ( ( F `  U ) ( +g  `  T
) ( F `  ( ( invg `  S ) `  V
) ) ) )
117, 10syld3an3 1294 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( U
( +g  `  S ) ( ( invg `  S ) `  V
) ) )  =  ( ( F `  U ) ( +g  `  T ) ( F `
 ( ( invg `  S ) `
 V ) ) ) )
12 eqid 2193 . . . . . 6  |-  ( invg `  T )  =  ( invg `  T )
134, 5, 12ghminv 13323 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  B )  ->  ( F `  ( ( invg `  S ) `
 V ) )  =  ( ( invg `  T ) `
 ( F `  V ) ) )
14133adant2 1018 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( ( invg `  S ) `
 V ) )  =  ( ( invg `  T ) `
 ( F `  V ) ) )
1514oveq2d 5935 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( F `  U
) ( +g  `  T
) ( F `  ( ( invg `  S ) `  V
) ) )  =  ( ( F `  U ) ( +g  `  T ) ( ( invg `  T
) `  ( F `  V ) ) ) )
1611, 15eqtrd 2226 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( U
( +g  `  S ) ( ( invg `  S ) `  V
) ) )  =  ( ( F `  U ) ( +g  `  T ) ( ( invg `  T
) `  ( F `  V ) ) ) )
17 ghmsub.m . . . . 5  |-  .-  =  ( -g `  S )
184, 8, 5, 17grpsubval 13121 . . . 4  |-  ( ( U  e.  B  /\  V  e.  B )  ->  ( U  .-  V
)  =  ( U ( +g  `  S
) ( ( invg `  S ) `
 V ) ) )
1918fveq2d 5559 . . 3  |-  ( ( U  e.  B  /\  V  e.  B )  ->  ( F `  ( U  .-  V ) )  =  ( F `  ( U ( +g  `  S
) ( ( invg `  S ) `
 V ) ) ) )
20193adant1 1017 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( U  .-  V ) )  =  ( F `  ( U ( +g  `  S
) ( ( invg `  S ) `
 V ) ) ) )
21 eqid 2193 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
224, 21ghmf 13320 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  F : B
--> ( Base `  T
) )
23 ffvelcdm 5692 . . . . . 6  |-  ( ( F : B --> ( Base `  T )  /\  U  e.  B )  ->  ( F `  U )  e.  ( Base `  T
) )
24 ffvelcdm 5692 . . . . . 6  |-  ( ( F : B --> ( Base `  T )  /\  V  e.  B )  ->  ( F `  V )  e.  ( Base `  T
) )
2523, 24anim12dan 600 . . . . 5  |-  ( ( F : B --> ( Base `  T )  /\  ( U  e.  B  /\  V  e.  B )
)  ->  ( ( F `  U )  e.  ( Base `  T
)  /\  ( F `  V )  e.  (
Base `  T )
) )
2622, 25sylan 283 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  ( U  e.  B  /\  V  e.  B )
)  ->  ( ( F `  U )  e.  ( Base `  T
)  /\  ( F `  V )  e.  (
Base `  T )
) )
27263impb 1201 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( F `  U
)  e.  ( Base `  T )  /\  ( F `  V )  e.  ( Base `  T
) ) )
28 ghmsub.n . . . 4  |-  N  =  ( -g `  T
)
2921, 9, 12, 28grpsubval 13121 . . 3  |-  ( ( ( F `  U
)  e.  ( Base `  T )  /\  ( F `  V )  e.  ( Base `  T
) )  ->  (
( F `  U
) N ( F `
 V ) )  =  ( ( F `
 U ) ( +g  `  T ) ( ( invg `  T ) `  ( F `  V )
) ) )
3027, 29syl 14 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( F `  U
) N ( F `
 V ) )  =  ( ( F `
 U ) ( +g  `  T ) ( ( invg `  T ) `  ( F `  V )
) ) )
3116, 20, 303eqtr4d 2236 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( U  .-  V ) )  =  ( ( F `  U ) N ( F `  V ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   -->wf 5251   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   Grpcgrp 13075   invgcminusg 13076   -gcsg 13077    GrpHom cghm 13313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-ghm 13314
This theorem is referenced by:  ghmnsgima  13341  ghmnsgpreima  13342  ghmeqker  13344  ghmf1  13346
  Copyright terms: Public domain W3C validator