ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmsub Unicode version

Theorem ghmsub 13788
Description: Linearity of subtraction through a group homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmsub.b  |-  B  =  ( Base `  S
)
ghmsub.m  |-  .-  =  ( -g `  S )
ghmsub.n  |-  N  =  ( -g `  T
)
Assertion
Ref Expression
ghmsub  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( U  .-  V ) )  =  ( ( F `  U ) N ( F `  V ) ) )

Proof of Theorem ghmsub
StepHypRef Expression
1 ghmgrp1 13782 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
213ad2ant1 1042 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  S  e.  Grp )
3 simp3 1023 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  V  e.  B )
4 ghmsub.b . . . . . 6  |-  B  =  ( Base `  S
)
5 eqid 2229 . . . . . 6  |-  ( invg `  S )  =  ( invg `  S )
64, 5grpinvcl 13581 . . . . 5  |-  ( ( S  e.  Grp  /\  V  e.  B )  ->  ( ( invg `  S ) `  V
)  e.  B )
72, 3, 6syl2anc 411 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( invg `  S ) `  V
)  e.  B )
8 eqid 2229 . . . . 5  |-  ( +g  `  S )  =  ( +g  `  S )
9 eqid 2229 . . . . 5  |-  ( +g  `  T )  =  ( +g  `  T )
104, 8, 9ghmlin 13785 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  (
( invg `  S ) `  V
)  e.  B )  ->  ( F `  ( U ( +g  `  S
) ( ( invg `  S ) `
 V ) ) )  =  ( ( F `  U ) ( +g  `  T
) ( F `  ( ( invg `  S ) `  V
) ) ) )
117, 10syld3an3 1316 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( U
( +g  `  S ) ( ( invg `  S ) `  V
) ) )  =  ( ( F `  U ) ( +g  `  T ) ( F `
 ( ( invg `  S ) `
 V ) ) ) )
12 eqid 2229 . . . . . 6  |-  ( invg `  T )  =  ( invg `  T )
134, 5, 12ghminv 13787 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  B )  ->  ( F `  ( ( invg `  S ) `
 V ) )  =  ( ( invg `  T ) `
 ( F `  V ) ) )
14133adant2 1040 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( ( invg `  S ) `
 V ) )  =  ( ( invg `  T ) `
 ( F `  V ) ) )
1514oveq2d 6017 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( F `  U
) ( +g  `  T
) ( F `  ( ( invg `  S ) `  V
) ) )  =  ( ( F `  U ) ( +g  `  T ) ( ( invg `  T
) `  ( F `  V ) ) ) )
1611, 15eqtrd 2262 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( U
( +g  `  S ) ( ( invg `  S ) `  V
) ) )  =  ( ( F `  U ) ( +g  `  T ) ( ( invg `  T
) `  ( F `  V ) ) ) )
17 ghmsub.m . . . . 5  |-  .-  =  ( -g `  S )
184, 8, 5, 17grpsubval 13579 . . . 4  |-  ( ( U  e.  B  /\  V  e.  B )  ->  ( U  .-  V
)  =  ( U ( +g  `  S
) ( ( invg `  S ) `
 V ) ) )
1918fveq2d 5631 . . 3  |-  ( ( U  e.  B  /\  V  e.  B )  ->  ( F `  ( U  .-  V ) )  =  ( F `  ( U ( +g  `  S
) ( ( invg `  S ) `
 V ) ) ) )
20193adant1 1039 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( U  .-  V ) )  =  ( F `  ( U ( +g  `  S
) ( ( invg `  S ) `
 V ) ) ) )
21 eqid 2229 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
224, 21ghmf 13784 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  F : B
--> ( Base `  T
) )
23 ffvelcdm 5768 . . . . . 6  |-  ( ( F : B --> ( Base `  T )  /\  U  e.  B )  ->  ( F `  U )  e.  ( Base `  T
) )
24 ffvelcdm 5768 . . . . . 6  |-  ( ( F : B --> ( Base `  T )  /\  V  e.  B )  ->  ( F `  V )  e.  ( Base `  T
) )
2523, 24anim12dan 602 . . . . 5  |-  ( ( F : B --> ( Base `  T )  /\  ( U  e.  B  /\  V  e.  B )
)  ->  ( ( F `  U )  e.  ( Base `  T
)  /\  ( F `  V )  e.  (
Base `  T )
) )
2622, 25sylan 283 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  ( U  e.  B  /\  V  e.  B )
)  ->  ( ( F `  U )  e.  ( Base `  T
)  /\  ( F `  V )  e.  (
Base `  T )
) )
27263impb 1223 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( F `  U
)  e.  ( Base `  T )  /\  ( F `  V )  e.  ( Base `  T
) ) )
28 ghmsub.n . . . 4  |-  N  =  ( -g `  T
)
2921, 9, 12, 28grpsubval 13579 . . 3  |-  ( ( ( F `  U
)  e.  ( Base `  T )  /\  ( F `  V )  e.  ( Base `  T
) )  ->  (
( F `  U
) N ( F `
 V ) )  =  ( ( F `
 U ) ( +g  `  T ) ( ( invg `  T ) `  ( F `  V )
) ) )
3027, 29syl 14 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  (
( F `  U
) N ( F `
 V ) )  =  ( ( F `
 U ) ( +g  `  T ) ( ( invg `  T ) `  ( F `  V )
) ) )
3116, 20, 303eqtr4d 2272 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  B  /\  V  e.  B )  ->  ( F `  ( U  .-  V ) )  =  ( ( F `  U ) N ( F `  V ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   -->wf 5314   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110   Grpcgrp 13533   invgcminusg 13534   -gcsg 13535    GrpHom cghm 13777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-sbg 13538  df-ghm 13778
This theorem is referenced by:  ghmnsgima  13805  ghmnsgpreima  13806  ghmeqker  13808  ghmf1  13810
  Copyright terms: Public domain W3C validator