ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghminv GIF version

Theorem ghminv 13320
Description: A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghminv.b 𝐵 = (Base‘𝑆)
ghminv.y 𝑀 = (invg𝑆)
ghminv.z 𝑁 = (invg𝑇)
Assertion
Ref Expression
ghminv ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑀𝑋)) = (𝑁‘(𝐹𝑋)))

Proof of Theorem ghminv
StepHypRef Expression
1 ghmgrp1 13315 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
2 ghminv.b . . . . . . 7 𝐵 = (Base‘𝑆)
3 eqid 2193 . . . . . . 7 (+g𝑆) = (+g𝑆)
4 eqid 2193 . . . . . . 7 (0g𝑆) = (0g𝑆)
5 ghminv.y . . . . . . 7 𝑀 = (invg𝑆)
62, 3, 4, 5grprinv 13123 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝑆)(𝑀𝑋)) = (0g𝑆))
71, 6sylan 283 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝑋(+g𝑆)(𝑀𝑋)) = (0g𝑆))
87fveq2d 5558 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑋(+g𝑆)(𝑀𝑋))) = (𝐹‘(0g𝑆)))
92, 5grpinvcl 13120 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝐵)
101, 9sylan 283 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝐵)
11 eqid 2193 . . . . . 6 (+g𝑇) = (+g𝑇)
122, 3, 11ghmlin 13318 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵 ∧ (𝑀𝑋) ∈ 𝐵) → (𝐹‘(𝑋(+g𝑆)(𝑀𝑋))) = ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))))
1310, 12mpd3an3 1349 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑋(+g𝑆)(𝑀𝑋))) = ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))))
14 eqid 2193 . . . . . 6 (0g𝑇) = (0g𝑇)
154, 14ghmid 13319 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘(0g𝑆)) = (0g𝑇))
1615adantr 276 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(0g𝑆)) = (0g𝑇))
178, 13, 163eqtr3d 2234 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))) = (0g𝑇))
18 ghmgrp2 13316 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
1918adantr 276 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → 𝑇 ∈ Grp)
20 eqid 2193 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
212, 20ghmf 13317 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
2221ffvelcdmda 5693 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹𝑋) ∈ (Base‘𝑇))
2321adantr 276 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → 𝐹:𝐵⟶(Base‘𝑇))
2423, 10ffvelcdmd 5694 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑀𝑋)) ∈ (Base‘𝑇))
25 ghminv.z . . . . 5 𝑁 = (invg𝑇)
2620, 11, 14, 25grpinvid1 13124 . . . 4 ((𝑇 ∈ Grp ∧ (𝐹𝑋) ∈ (Base‘𝑇) ∧ (𝐹‘(𝑀𝑋)) ∈ (Base‘𝑇)) → ((𝑁‘(𝐹𝑋)) = (𝐹‘(𝑀𝑋)) ↔ ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))) = (0g𝑇)))
2719, 22, 24, 26syl3anc 1249 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → ((𝑁‘(𝐹𝑋)) = (𝐹‘(𝑀𝑋)) ↔ ((𝐹𝑋)(+g𝑇)(𝐹‘(𝑀𝑋))) = (0g𝑇)))
2817, 27mpbird 167 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝑁‘(𝐹𝑋)) = (𝐹‘(𝑀𝑋)))
2928eqcomd 2199 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋𝐵) → (𝐹‘(𝑀𝑋)) = (𝑁‘(𝐹𝑋)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wf 5250  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  0gc0g 12867  Grpcgrp 13072  invgcminusg 13073   GrpHom cghm 13310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-ghm 13311
This theorem is referenced by:  ghmsub  13321  ghmmulg  13326  ghmrn  13327  ghmpreima  13336  ghmeql  13337
  Copyright terms: Public domain W3C validator