ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmeql Unicode version

Theorem ghmeql 13397
Description: The equalizer of two group homomorphisms is a subgroup. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ghmeql  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubGrp `  S )
)

Proof of Theorem ghmeql
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmmhm 13383 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  F  e.  ( S MndHom  T ) )
2 ghmmhm 13383 . . 3  |-  ( G  e.  ( S  GrpHom  T )  ->  G  e.  ( S MndHom  T ) )
3 mhmeql 13124 . . 3  |-  ( ( F  e.  ( S MndHom  T )  /\  G  e.  ( S MndHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubMnd `  S )
)
41, 2, 3syl2an 289 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubMnd `  S )
)
5 fveq2 5558 . . . . . . . 8  |-  ( y  =  ( ( invg `  S ) `
 x )  -> 
( F `  y
)  =  ( F `
 ( ( invg `  S ) `
 x ) ) )
6 fveq2 5558 . . . . . . . 8  |-  ( y  =  ( ( invg `  S ) `
 x )  -> 
( G `  y
)  =  ( G `
 ( ( invg `  S ) `
 x ) ) )
75, 6eqeq12d 2211 . . . . . . 7  |-  ( y  =  ( ( invg `  S ) `
 x )  -> 
( ( F `  y )  =  ( G `  y )  <-> 
( F `  (
( invg `  S ) `  x
) )  =  ( G `  ( ( invg `  S
) `  x )
) ) )
8 ghmgrp1 13375 . . . . . . . . . 10  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
98adantr 276 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  S  e.  Grp )
109adantr 276 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  S  e.  Grp )
11 simprl 529 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  x  e.  (
Base `  S )
)
12 eqid 2196 . . . . . . . . 9  |-  ( Base `  S )  =  (
Base `  S )
13 eqid 2196 . . . . . . . . 9  |-  ( invg `  S )  =  ( invg `  S )
1412, 13grpinvcl 13180 . . . . . . . 8  |-  ( ( S  e.  Grp  /\  x  e.  ( Base `  S ) )  -> 
( ( invg `  S ) `  x
)  e.  ( Base `  S ) )
1510, 11, 14syl2anc 411 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( ( invg `  S ) `
 x )  e.  ( Base `  S
) )
16 simprr 531 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( F `  x )  =  ( G `  x ) )
1716fveq2d 5562 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( ( invg `  T ) `
 ( F `  x ) )  =  ( ( invg `  T ) `  ( G `  x )
) )
18 eqid 2196 . . . . . . . . . 10  |-  ( invg `  T )  =  ( invg `  T )
1912, 13, 18ghminv 13380 . . . . . . . . 9  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  x  e.  ( Base `  S
) )  ->  ( F `  ( ( invg `  S ) `
 x ) )  =  ( ( invg `  T ) `
 ( F `  x ) ) )
2019ad2ant2r 509 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( F `  ( ( invg `  S ) `  x
) )  =  ( ( invg `  T ) `  ( F `  x )
) )
2112, 13, 18ghminv 13380 . . . . . . . . 9  |-  ( ( G  e.  ( S 
GrpHom  T )  /\  x  e.  ( Base `  S
) )  ->  ( G `  ( ( invg `  S ) `
 x ) )  =  ( ( invg `  T ) `
 ( G `  x ) ) )
2221ad2ant2lr 510 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( G `  ( ( invg `  S ) `  x
) )  =  ( ( invg `  T ) `  ( G `  x )
) )
2317, 20, 223eqtr4d 2239 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( F `  ( ( invg `  S ) `  x
) )  =  ( G `  ( ( invg `  S
) `  x )
) )
247, 15, 23elrabd 2922 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  ( x  e.  ( Base `  S )  /\  ( F `  x )  =  ( G `  x ) ) )  ->  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } )
2524expr 375 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  /\  x  e.  ( Base `  S ) )  -> 
( ( F `  x )  =  ( G `  x )  ->  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
2625ralrimiva 2570 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  A. x  e.  ( Base `  S
) ( ( F `
 x )  =  ( G `  x
)  ->  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
27 fveq2 5558 . . . . . 6  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
28 fveq2 5558 . . . . . 6  |-  ( y  =  x  ->  ( G `  y )  =  ( G `  x ) )
2927, 28eqeq12d 2211 . . . . 5  |-  ( y  =  x  ->  (
( F `  y
)  =  ( G `
 y )  <->  ( F `  x )  =  ( G `  x ) ) )
3029ralrab 2925 . . . 4  |-  ( A. x  e.  { y  e.  ( Base `  S
)  |  ( F `
 y )  =  ( G `  y
) }  ( ( invg `  S
) `  x )  e.  { y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) }  <->  A. x  e.  (
Base `  S )
( ( F `  x )  =  ( G `  x )  ->  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
3126, 30sylibr 134 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  A. x  e.  { y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) }  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } )
32 eqid 2196 . . . . . . . 8  |-  ( Base `  T )  =  (
Base `  T )
3312, 32ghmf 13377 . . . . . . 7  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
3433adantr 276 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  F :
( Base `  S ) --> ( Base `  T )
)
3534ffnd 5408 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  F  Fn  ( Base `  S )
)
3612, 32ghmf 13377 . . . . . . 7  |-  ( G  e.  ( S  GrpHom  T )  ->  G :
( Base `  S ) --> ( Base `  T )
)
3736adantl 277 . . . . . 6  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  G :
( Base `  S ) --> ( Base `  T )
)
3837ffnd 5408 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  G  Fn  ( Base `  S )
)
39 fndmin 5669 . . . . 5  |-  ( ( F  Fn  ( Base `  S )  /\  G  Fn  ( Base `  S
) )  ->  dom  ( F  i^i  G )  =  { y  e.  ( Base `  S
)  |  ( F `
 y )  =  ( G `  y
) } )
4035, 38, 39syl2anc 411 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  dom  ( F  i^i  G )  =  { y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } )
41 eleq2 2260 . . . . 5  |-  ( dom  ( F  i^i  G
)  =  { y  e.  ( Base `  S
)  |  ( F `
 y )  =  ( G `  y
) }  ->  (
( ( invg `  S ) `  x
)  e.  dom  ( F  i^i  G )  <->  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
4241raleqbi1dv 2705 . . . 4  |-  ( dom  ( F  i^i  G
)  =  { y  e.  ( Base `  S
)  |  ( F `
 y )  =  ( G `  y
) }  ->  ( A. x  e.  dom  ( F  i^i  G ) ( ( invg `  S ) `  x
)  e.  dom  ( F  i^i  G )  <->  A. x  e.  { y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) }  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
4340, 42syl 14 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  ( A. x  e.  dom  ( F  i^i  G ) ( ( invg `  S ) `  x
)  e.  dom  ( F  i^i  G )  <->  A. x  e.  { y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) }  ( ( invg `  S ) `
 x )  e. 
{ y  e.  (
Base `  S )  |  ( F `  y )  =  ( G `  y ) } ) )
4431, 43mpbird 167 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  A. x  e.  dom  ( F  i^i  G ) ( ( invg `  S ) `
 x )  e. 
dom  ( F  i^i  G ) )
4513issubg3 13322 . . 3  |-  ( S  e.  Grp  ->  ( dom  ( F  i^i  G
)  e.  (SubGrp `  S )  <->  ( dom  ( F  i^i  G )  e.  (SubMnd `  S
)  /\  A. x  e.  dom  ( F  i^i  G ) ( ( invg `  S ) `
 x )  e. 
dom  ( F  i^i  G ) ) ) )
469, 45syl 14 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  ( dom  ( F  i^i  G )  e.  (SubGrp `  S
)  <->  ( dom  ( F  i^i  G )  e.  (SubMnd `  S )  /\  A. x  e.  dom  ( F  i^i  G ) ( ( invg `  S ) `  x
)  e.  dom  ( F  i^i  G ) ) ) )
474, 44, 46mpbir2and 946 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  G  e.  ( S  GrpHom  T ) )  ->  dom  ( F  i^i  G )  e.  (SubGrp `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479    i^i cin 3156   dom cdm 4663    Fn wfn 5253   -->wf 5254   ` cfv 5258  (class class class)co 5922   Basecbs 12678   MndHom cmhm 13089  SubMndcsubmnd 13090   Grpcgrp 13132   invgcminusg 13133  SubGrpcsubg 13297    GrpHom cghm 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mhm 13091  df-submnd 13092  df-grp 13135  df-minusg 13136  df-subg 13300  df-ghm 13371
This theorem is referenced by:  rhmeql  13806
  Copyright terms: Public domain W3C validator