ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmsub GIF version

Theorem ghmsub 13381
Description: Linearity of subtraction through a group homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmsub.b 𝐵 = (Base‘𝑆)
ghmsub.m = (-g𝑆)
ghmsub.n 𝑁 = (-g𝑇)
Assertion
Ref Expression
ghmsub ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = ((𝐹𝑈)𝑁(𝐹𝑉)))

Proof of Theorem ghmsub
StepHypRef Expression
1 ghmgrp1 13375 . . . . . 6 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
213ad2ant1 1020 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑆 ∈ Grp)
3 simp3 1001 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → 𝑉𝐵)
4 ghmsub.b . . . . . 6 𝐵 = (Base‘𝑆)
5 eqid 2196 . . . . . 6 (invg𝑆) = (invg𝑆)
64, 5grpinvcl 13180 . . . . 5 ((𝑆 ∈ Grp ∧ 𝑉𝐵) → ((invg𝑆)‘𝑉) ∈ 𝐵)
72, 3, 6syl2anc 411 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((invg𝑆)‘𝑉) ∈ 𝐵)
8 eqid 2196 . . . . 5 (+g𝑆) = (+g𝑆)
9 eqid 2196 . . . . 5 (+g𝑇) = (+g𝑇)
104, 8, 9ghmlin 13378 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵 ∧ ((invg𝑆)‘𝑉) ∈ 𝐵) → (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))) = ((𝐹𝑈)(+g𝑇)(𝐹‘((invg𝑆)‘𝑉))))
117, 10syld3an3 1294 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))) = ((𝐹𝑈)(+g𝑇)(𝐹‘((invg𝑆)‘𝑉))))
12 eqid 2196 . . . . . 6 (invg𝑇) = (invg𝑇)
134, 5, 12ghminv 13380 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉𝐵) → (𝐹‘((invg𝑆)‘𝑉)) = ((invg𝑇)‘(𝐹𝑉)))
14133adant2 1018 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘((invg𝑆)‘𝑉)) = ((invg𝑇)‘(𝐹𝑉)))
1514oveq2d 5938 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈)(+g𝑇)(𝐹‘((invg𝑆)‘𝑉))) = ((𝐹𝑈)(+g𝑇)((invg𝑇)‘(𝐹𝑉))))
1611, 15eqtrd 2229 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))) = ((𝐹𝑈)(+g𝑇)((invg𝑇)‘(𝐹𝑉))))
17 ghmsub.m . . . . 5 = (-g𝑆)
184, 8, 5, 17grpsubval 13178 . . . 4 ((𝑈𝐵𝑉𝐵) → (𝑈 𝑉) = (𝑈(+g𝑆)((invg𝑆)‘𝑉)))
1918fveq2d 5562 . . 3 ((𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))))
20193adant1 1017 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = (𝐹‘(𝑈(+g𝑆)((invg𝑆)‘𝑉))))
21 eqid 2196 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
224, 21ghmf 13377 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝐵⟶(Base‘𝑇))
23 ffvelcdm 5695 . . . . . 6 ((𝐹:𝐵⟶(Base‘𝑇) ∧ 𝑈𝐵) → (𝐹𝑈) ∈ (Base‘𝑇))
24 ffvelcdm 5695 . . . . . 6 ((𝐹:𝐵⟶(Base‘𝑇) ∧ 𝑉𝐵) → (𝐹𝑉) ∈ (Base‘𝑇))
2523, 24anim12dan 600 . . . . 5 ((𝐹:𝐵⟶(Base‘𝑇) ∧ (𝑈𝐵𝑉𝐵)) → ((𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)))
2622, 25sylan 283 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (𝑈𝐵𝑉𝐵)) → ((𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)))
27263impb 1201 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)))
28 ghmsub.n . . . 4 𝑁 = (-g𝑇)
2921, 9, 12, 28grpsubval 13178 . . 3 (((𝐹𝑈) ∈ (Base‘𝑇) ∧ (𝐹𝑉) ∈ (Base‘𝑇)) → ((𝐹𝑈)𝑁(𝐹𝑉)) = ((𝐹𝑈)(+g𝑇)((invg𝑇)‘(𝐹𝑉))))
3027, 29syl 14 . 2 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → ((𝐹𝑈)𝑁(𝐹𝑉)) = ((𝐹𝑈)(+g𝑇)((invg𝑇)‘(𝐹𝑉))))
3116, 20, 303eqtr4d 2239 1 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈𝐵𝑉𝐵) → (𝐹‘(𝑈 𝑉)) = ((𝐹𝑈)𝑁(𝐹𝑉)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wf 5254  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  Grpcgrp 13132  invgcminusg 13133  -gcsg 13134   GrpHom cghm 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-ghm 13371
This theorem is referenced by:  ghmnsgima  13398  ghmnsgpreima  13399  ghmeqker  13401  ghmf1  13403
  Copyright terms: Public domain W3C validator