| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmnsgpreima | Unicode version | ||
| Description: The inverse image of a normal subgroup under a homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| ghmnsgpreima |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsgsubg 13737 |
. . 3
| |
| 2 | ghmpreima 13798 |
. . 3
| |
| 3 | 1, 2 | sylan2 286 |
. 2
|
| 4 | ghmgrp1 13777 |
. . . . . 6
| |
| 5 | 4 | ad2antrr 488 |
. . . . 5
|
| 6 | simprl 529 |
. . . . . 6
| |
| 7 | simprr 531 |
. . . . . . . 8
| |
| 8 | simpll 527 |
. . . . . . . . . . 11
| |
| 9 | eqid 2229 |
. . . . . . . . . . . 12
| |
| 10 | eqid 2229 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | ghmf 13779 |
. . . . . . . . . . 11
|
| 12 | 8, 11 | syl 14 |
. . . . . . . . . 10
|
| 13 | 12 | ffnd 5473 |
. . . . . . . . 9
|
| 14 | elpreima 5753 |
. . . . . . . . 9
| |
| 15 | 13, 14 | syl 14 |
. . . . . . . 8
|
| 16 | 7, 15 | mpbid 147 |
. . . . . . 7
|
| 17 | 16 | simpld 112 |
. . . . . 6
|
| 18 | eqid 2229 |
. . . . . . 7
| |
| 19 | 9, 18 | grpcl 13536 |
. . . . . 6
|
| 20 | 5, 6, 17, 19 | syl3anc 1271 |
. . . . 5
|
| 21 | eqid 2229 |
. . . . . 6
| |
| 22 | 9, 21 | grpsubcl 13608 |
. . . . 5
|
| 23 | 5, 20, 6, 22 | syl3anc 1271 |
. . . 4
|
| 24 | eqid 2229 |
. . . . . . . 8
| |
| 25 | 9, 21, 24 | ghmsub 13783 |
. . . . . . 7
|
| 26 | 8, 20, 6, 25 | syl3anc 1271 |
. . . . . 6
|
| 27 | eqid 2229 |
. . . . . . . . 9
| |
| 28 | 9, 18, 27 | ghmlin 13780 |
. . . . . . . 8
|
| 29 | 8, 6, 17, 28 | syl3anc 1271 |
. . . . . . 7
|
| 30 | 29 | oveq1d 6015 |
. . . . . 6
|
| 31 | 26, 30 | eqtrd 2262 |
. . . . 5
|
| 32 | simplr 528 |
. . . . . 6
| |
| 33 | 12, 6 | ffvelcdmd 5770 |
. . . . . 6
|
| 34 | 16 | simprd 114 |
. . . . . 6
|
| 35 | 10, 27, 24 | nsgconj 13738 |
. . . . . 6
|
| 36 | 32, 33, 34, 35 | syl3anc 1271 |
. . . . 5
|
| 37 | 31, 36 | eqeltrd 2306 |
. . . 4
|
| 38 | elpreima 5753 |
. . . . 5
| |
| 39 | 13, 38 | syl 14 |
. . . 4
|
| 40 | 23, 37, 39 | mpbir2and 950 |
. . 3
|
| 41 | 40 | ralrimivva 2612 |
. 2
|
| 42 | 9, 18, 21 | isnsg3 13739 |
. 2
|
| 43 | 3, 41, 42 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-iress 13035 df-plusg 13118 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 df-sbg 13533 df-subg 13702 df-nsg 13703 df-ghm 13773 |
| This theorem is referenced by: ghmker 13802 |
| Copyright terms: Public domain | W3C validator |