ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmnsgpreima Unicode version

Theorem ghmnsgpreima 13576
Description: The inverse image of a normal subgroup under a homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
ghmnsgpreima  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (NrmSGrp `  T )
)  ->  ( `' F " V )  e.  (NrmSGrp `  S )
)

Proof of Theorem ghmnsgpreima
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 13512 . . 3  |-  ( V  e.  (NrmSGrp `  T
)  ->  V  e.  (SubGrp `  T ) )
2 ghmpreima 13573 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( `' F " V )  e.  (SubGrp `  S )
)
31, 2sylan2 286 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (NrmSGrp `  T )
)  ->  ( `' F " V )  e.  (SubGrp `  S )
)
4 ghmgrp1 13552 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
54ad2antrr 488 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  S  e.  Grp )
6 simprl 529 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  x  e.  (
Base `  S )
)
7 simprr 531 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  y  e.  ( `' F " V ) )
8 simpll 527 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  F  e.  ( S  GrpHom  T ) )
9 eqid 2204 . . . . . . . . . . . 12  |-  ( Base `  S )  =  (
Base `  S )
10 eqid 2204 . . . . . . . . . . . 12  |-  ( Base `  T )  =  (
Base `  T )
119, 10ghmf 13554 . . . . . . . . . . 11  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
128, 11syl 14 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  F : (
Base `  S ) --> ( Base `  T )
)
1312ffnd 5425 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  F  Fn  ( Base `  S ) )
14 elpreima 5698 . . . . . . . . 9  |-  ( F  Fn  ( Base `  S
)  ->  ( y  e.  ( `' F " V )  <->  ( y  e.  ( Base `  S
)  /\  ( F `  y )  e.  V
) ) )
1513, 14syl 14 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( y  e.  ( `' F " V )  <->  ( y  e.  ( Base `  S
)  /\  ( F `  y )  e.  V
) ) )
167, 15mpbid 147 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( y  e.  ( Base `  S
)  /\  ( F `  y )  e.  V
) )
1716simpld 112 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  y  e.  (
Base `  S )
)
18 eqid 2204 . . . . . . 7  |-  ( +g  `  S )  =  ( +g  `  S )
199, 18grpcl 13311 . . . . . 6  |-  ( ( S  e.  Grp  /\  x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) )  ->  (
x ( +g  `  S
) y )  e.  ( Base `  S
) )
205, 6, 17, 19syl3anc 1249 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( x ( +g  `  S ) y )  e.  (
Base `  S )
)
21 eqid 2204 . . . . . 6  |-  ( -g `  S )  =  (
-g `  S )
229, 21grpsubcl 13383 . . . . 5  |-  ( ( S  e.  Grp  /\  ( x ( +g  `  S ) y )  e.  ( Base `  S
)  /\  x  e.  ( Base `  S )
)  ->  ( (
x ( +g  `  S
) y ) (
-g `  S )
x )  e.  (
Base `  S )
)
235, 20, 6, 22syl3anc 1249 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  (
Base `  S )
)
24 eqid 2204 . . . . . . . 8  |-  ( -g `  T )  =  (
-g `  T )
259, 21, 24ghmsub 13558 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  (
x ( +g  `  S
) y )  e.  ( Base `  S
)  /\  x  e.  ( Base `  S )
)  ->  ( F `  ( ( x ( +g  `  S ) y ) ( -g `  S ) x ) )  =  ( ( F `  ( x ( +g  `  S
) y ) ) ( -g `  T
) ( F `  x ) ) )
268, 20, 6, 25syl3anc 1249 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  ( ( x ( +g  `  S ) y ) ( -g `  S ) x ) )  =  ( ( F `  ( x ( +g  `  S
) y ) ) ( -g `  T
) ( F `  x ) ) )
27 eqid 2204 . . . . . . . . 9  |-  ( +g  `  T )  =  ( +g  `  T )
289, 18, 27ghmlin 13555 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
298, 6, 17, 28syl3anc 1249 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
3029oveq1d 5958 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( ( F `
 ( x ( +g  `  S ) y ) ) (
-g `  T )
( F `  x
) )  =  ( ( ( F `  x ) ( +g  `  T ) ( F `
 y ) ) ( -g `  T
) ( F `  x ) ) )
3126, 30eqtrd 2237 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  ( ( x ( +g  `  S ) y ) ( -g `  S ) x ) )  =  ( ( ( F `  x
) ( +g  `  T
) ( F `  y ) ) (
-g `  T )
( F `  x
) ) )
32 simplr 528 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  V  e.  (NrmSGrp `  T ) )
3312, 6ffvelcdmd 5715 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  x )  e.  (
Base `  T )
)
3416simprd 114 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  y )  e.  V
)
3510, 27, 24nsgconj 13513 . . . . . 6  |-  ( ( V  e.  (NrmSGrp `  T
)  /\  ( F `  x )  e.  (
Base `  T )  /\  ( F `  y
)  e.  V )  ->  ( ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) (
-g `  T )
( F `  x
) )  e.  V
)
3632, 33, 34, 35syl3anc 1249 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) (
-g `  T )
( F `  x
) )  e.  V
)
3731, 36eqeltrd 2281 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  ( ( x ( +g  `  S ) y ) ( -g `  S ) x ) )  e.  V )
38 elpreima 5698 . . . . 5  |-  ( F  Fn  ( Base `  S
)  ->  ( (
( x ( +g  `  S ) y ) ( -g `  S
) x )  e.  ( `' F " V )  <->  ( (
( x ( +g  `  S ) y ) ( -g `  S
) x )  e.  ( Base `  S
)  /\  ( F `  ( ( x ( +g  `  S ) y ) ( -g `  S ) x ) )  e.  V ) ) )
3913, 38syl 14 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  ( `' F " V )  <-> 
( ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  (
Base `  S )  /\  ( F `  (
( x ( +g  `  S ) y ) ( -g `  S
) x ) )  e.  V ) ) )
4023, 37, 39mpbir2and 946 . . 3  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  ( `' F " V ) )
4140ralrimivva 2587 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (NrmSGrp `  T )
)  ->  A. x  e.  ( Base `  S
) A. y  e.  ( `' F " V ) ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  ( `' F " V ) )
429, 18, 21isnsg3 13514 . 2  |-  ( ( `' F " V )  e.  (NrmSGrp `  S
)  <->  ( ( `' F " V )  e.  (SubGrp `  S
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( `' F " V ) ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  ( `' F " V ) ) )
433, 41, 42sylanbrc 417 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (NrmSGrp `  T )
)  ->  ( `' F " V )  e.  (NrmSGrp `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   A.wral 2483   `'ccnv 4673   "cima 4677    Fn wfn 5265   -->wf 5266   ` cfv 5270  (class class class)co 5943   Basecbs 12803   +g cplusg 12880   Grpcgrp 13303   -gcsg 13305  SubGrpcsubg 13474  NrmSGrpcnsg 13475    GrpHom cghm 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811  df-plusg 12893  df-0g 13061  df-mgm 13159  df-sgrp 13205  df-mnd 13220  df-grp 13306  df-minusg 13307  df-sbg 13308  df-subg 13477  df-nsg 13478  df-ghm 13548
This theorem is referenced by:  ghmker  13577
  Copyright terms: Public domain W3C validator