ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmnsgpreima Unicode version

Theorem ghmnsgpreima 13720
Description: The inverse image of a normal subgroup under a homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
ghmnsgpreima  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (NrmSGrp `  T )
)  ->  ( `' F " V )  e.  (NrmSGrp `  S )
)

Proof of Theorem ghmnsgpreima
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 13656 . . 3  |-  ( V  e.  (NrmSGrp `  T
)  ->  V  e.  (SubGrp `  T ) )
2 ghmpreima 13717 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (SubGrp `  T )
)  ->  ( `' F " V )  e.  (SubGrp `  S )
)
31, 2sylan2 286 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (NrmSGrp `  T )
)  ->  ( `' F " V )  e.  (SubGrp `  S )
)
4 ghmgrp1 13696 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
54ad2antrr 488 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  S  e.  Grp )
6 simprl 529 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  x  e.  (
Base `  S )
)
7 simprr 531 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  y  e.  ( `' F " V ) )
8 simpll 527 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  F  e.  ( S  GrpHom  T ) )
9 eqid 2207 . . . . . . . . . . . 12  |-  ( Base `  S )  =  (
Base `  S )
10 eqid 2207 . . . . . . . . . . . 12  |-  ( Base `  T )  =  (
Base `  T )
119, 10ghmf 13698 . . . . . . . . . . 11  |-  ( F  e.  ( S  GrpHom  T )  ->  F :
( Base `  S ) --> ( Base `  T )
)
128, 11syl 14 . . . . . . . . . 10  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  F : (
Base `  S ) --> ( Base `  T )
)
1312ffnd 5446 . . . . . . . . 9  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  F  Fn  ( Base `  S ) )
14 elpreima 5722 . . . . . . . . 9  |-  ( F  Fn  ( Base `  S
)  ->  ( y  e.  ( `' F " V )  <->  ( y  e.  ( Base `  S
)  /\  ( F `  y )  e.  V
) ) )
1513, 14syl 14 . . . . . . . 8  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( y  e.  ( `' F " V )  <->  ( y  e.  ( Base `  S
)  /\  ( F `  y )  e.  V
) ) )
167, 15mpbid 147 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( y  e.  ( Base `  S
)  /\  ( F `  y )  e.  V
) )
1716simpld 112 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  y  e.  (
Base `  S )
)
18 eqid 2207 . . . . . . 7  |-  ( +g  `  S )  =  ( +g  `  S )
199, 18grpcl 13455 . . . . . 6  |-  ( ( S  e.  Grp  /\  x  e.  ( Base `  S )  /\  y  e.  ( Base `  S
) )  ->  (
x ( +g  `  S
) y )  e.  ( Base `  S
) )
205, 6, 17, 19syl3anc 1250 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( x ( +g  `  S ) y )  e.  (
Base `  S )
)
21 eqid 2207 . . . . . 6  |-  ( -g `  S )  =  (
-g `  S )
229, 21grpsubcl 13527 . . . . 5  |-  ( ( S  e.  Grp  /\  ( x ( +g  `  S ) y )  e.  ( Base `  S
)  /\  x  e.  ( Base `  S )
)  ->  ( (
x ( +g  `  S
) y ) (
-g `  S )
x )  e.  (
Base `  S )
)
235, 20, 6, 22syl3anc 1250 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  (
Base `  S )
)
24 eqid 2207 . . . . . . . 8  |-  ( -g `  T )  =  (
-g `  T )
259, 21, 24ghmsub 13702 . . . . . . 7  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  (
x ( +g  `  S
) y )  e.  ( Base `  S
)  /\  x  e.  ( Base `  S )
)  ->  ( F `  ( ( x ( +g  `  S ) y ) ( -g `  S ) x ) )  =  ( ( F `  ( x ( +g  `  S
) y ) ) ( -g `  T
) ( F `  x ) ) )
268, 20, 6, 25syl3anc 1250 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  ( ( x ( +g  `  S ) y ) ( -g `  S ) x ) )  =  ( ( F `  ( x ( +g  `  S
) y ) ) ( -g `  T
) ( F `  x ) ) )
27 eqid 2207 . . . . . . . . 9  |-  ( +g  `  T )  =  ( +g  `  T )
289, 18, 27ghmlin 13699 . . . . . . . 8  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  x  e.  ( Base `  S
)  /\  y  e.  ( Base `  S )
)  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
298, 6, 17, 28syl3anc 1250 . . . . . . 7  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  ( x ( +g  `  S ) y ) )  =  ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) )
3029oveq1d 5982 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( ( F `
 ( x ( +g  `  S ) y ) ) (
-g `  T )
( F `  x
) )  =  ( ( ( F `  x ) ( +g  `  T ) ( F `
 y ) ) ( -g `  T
) ( F `  x ) ) )
3126, 30eqtrd 2240 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  ( ( x ( +g  `  S ) y ) ( -g `  S ) x ) )  =  ( ( ( F `  x
) ( +g  `  T
) ( F `  y ) ) (
-g `  T )
( F `  x
) ) )
32 simplr 528 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  V  e.  (NrmSGrp `  T ) )
3312, 6ffvelcdmd 5739 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  x )  e.  (
Base `  T )
)
3416simprd 114 . . . . . 6  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  y )  e.  V
)
3510, 27, 24nsgconj 13657 . . . . . 6  |-  ( ( V  e.  (NrmSGrp `  T
)  /\  ( F `  x )  e.  (
Base `  T )  /\  ( F `  y
)  e.  V )  ->  ( ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) (
-g `  T )
( F `  x
) )  e.  V
)
3632, 33, 34, 35syl3anc 1250 . . . . 5  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( ( ( F `  x ) ( +g  `  T
) ( F `  y ) ) (
-g `  T )
( F `  x
) )  e.  V
)
3731, 36eqeltrd 2284 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( F `  ( ( x ( +g  `  S ) y ) ( -g `  S ) x ) )  e.  V )
38 elpreima 5722 . . . . 5  |-  ( F  Fn  ( Base `  S
)  ->  ( (
( x ( +g  `  S ) y ) ( -g `  S
) x )  e.  ( `' F " V )  <->  ( (
( x ( +g  `  S ) y ) ( -g `  S
) x )  e.  ( Base `  S
)  /\  ( F `  ( ( x ( +g  `  S ) y ) ( -g `  S ) x ) )  e.  V ) ) )
3913, 38syl 14 . . . 4  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  ( `' F " V )  <-> 
( ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  (
Base `  S )  /\  ( F `  (
( x ( +g  `  S ) y ) ( -g `  S
) x ) )  e.  V ) ) )
4023, 37, 39mpbir2and 947 . . 3  |-  ( ( ( F  e.  ( S  GrpHom  T )  /\  V  e.  (NrmSGrp `  T
) )  /\  (
x  e.  ( Base `  S )  /\  y  e.  ( `' F " V ) ) )  ->  ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  ( `' F " V ) )
4140ralrimivva 2590 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (NrmSGrp `  T )
)  ->  A. x  e.  ( Base `  S
) A. y  e.  ( `' F " V ) ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  ( `' F " V ) )
429, 18, 21isnsg3 13658 . 2  |-  ( ( `' F " V )  e.  (NrmSGrp `  S
)  <->  ( ( `' F " V )  e.  (SubGrp `  S
)  /\  A. x  e.  ( Base `  S
) A. y  e.  ( `' F " V ) ( ( x ( +g  `  S
) y ) (
-g `  S )
x )  e.  ( `' F " V ) ) )
433, 41, 42sylanbrc 417 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  V  e.  (NrmSGrp `  T )
)  ->  ( `' F " V )  e.  (NrmSGrp `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   `'ccnv 4692   "cima 4696    Fn wfn 5285   -->wf 5286   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   Grpcgrp 13447   -gcsg 13449  SubGrpcsubg 13618  NrmSGrpcnsg 13619    GrpHom cghm 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-sbg 13452  df-subg 13621  df-nsg 13622  df-ghm 13692
This theorem is referenced by:  ghmker  13721
  Copyright terms: Public domain W3C validator