| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zringinvg | Unicode version | ||
| Description: The additive inverse of an element of the ring of integers. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
| Ref | Expression |
|---|---|
| zringinvg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9334 |
. . . 4
| |
| 2 | 1 | negidd 8330 |
. . 3
|
| 3 | zringgrp 14177 |
. . . 4
| |
| 4 | id 19 |
. . . 4
| |
| 5 | znegcl 9360 |
. . . 4
| |
| 6 | zringbas 14178 |
. . . . 5
| |
| 7 | zringplusg 14179 |
. . . . 5
| |
| 8 | zring0 14182 |
. . . . 5
| |
| 9 | eqid 2196 |
. . . . 5
| |
| 10 | 6, 7, 8, 9 | grpinvid1 13210 |
. . . 4
|
| 11 | 3, 4, 5, 10 | mp3an2i 1353 |
. . 3
|
| 12 | 2, 11 | mpbird 167 |
. 2
|
| 13 | 12 | eqcomd 2202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-precex 7992 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 ax-pre-mulgt0 7999 ax-addf 8004 ax-mulf 8005 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6200 df-2nd 6201 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-reap 8605 df-inn 8994 df-2 9052 df-3 9053 df-4 9054 df-5 9055 df-6 9056 df-7 9057 df-8 9058 df-9 9059 df-n0 9253 df-z 9330 df-dec 9461 df-uz 9605 df-rp 9732 df-fz 10087 df-cj 11010 df-abs 11167 df-struct 12691 df-ndx 12692 df-slot 12693 df-base 12695 df-sets 12696 df-iress 12697 df-plusg 12779 df-mulr 12780 df-starv 12781 df-tset 12785 df-ple 12786 df-ds 12788 df-unif 12789 df-0g 12946 df-topgen 12948 df-mgm 13025 df-sgrp 13071 df-mnd 13084 df-grp 13161 df-minusg 13162 df-subg 13326 df-cmn 13442 df-mgp 13503 df-ur 13542 df-ring 13580 df-cring 13581 df-subrg 13801 df-bl 14128 df-mopn 14129 df-fg 14131 df-metu 14132 df-cnfld 14139 df-zring 14173 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |