| Step | Hyp | Ref
| Expression |
| 1 | | invghm.b |
. . 3
⊢ 𝐵 = (Base‘𝐺) |
| 2 | | eqid 2196 |
. . 3
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 3 | | ablgrp 13419 |
. . 3
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| 4 | | invghm.m |
. . . . 5
⊢ 𝐼 = (invg‘𝐺) |
| 5 | 1, 4 | grpinvf 13179 |
. . . 4
⊢ (𝐺 ∈ Grp → 𝐼:𝐵⟶𝐵) |
| 6 | 3, 5 | syl 14 |
. . 3
⊢ (𝐺 ∈ Abel → 𝐼:𝐵⟶𝐵) |
| 7 | 1, 2, 4 | ablinvadd 13440 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝐼‘(𝑥(+g‘𝐺)𝑦)) = ((𝐼‘𝑥)(+g‘𝐺)(𝐼‘𝑦))) |
| 8 | 7 | 3expb 1206 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘(𝑥(+g‘𝐺)𝑦)) = ((𝐼‘𝑥)(+g‘𝐺)(𝐼‘𝑦))) |
| 9 | 1, 1, 2, 2, 3, 3, 6, 8 | isghmd 13382 |
. 2
⊢ (𝐺 ∈ Abel → 𝐼 ∈ (𝐺 GrpHom 𝐺)) |
| 10 | | ghmgrp1 13375 |
. . 3
⊢ (𝐼 ∈ (𝐺 GrpHom 𝐺) → 𝐺 ∈ Grp) |
| 11 | 10 | adantr 276 |
. . . . . . . 8
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐺 ∈ Grp) |
| 12 | | simprr 531 |
. . . . . . . 8
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
| 13 | | simprl 529 |
. . . . . . . 8
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
| 14 | 1, 2, 4 | grpinvadd 13210 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝐼‘(𝑦(+g‘𝐺)𝑥)) = ((𝐼‘𝑥)(+g‘𝐺)(𝐼‘𝑦))) |
| 15 | 11, 12, 13, 14 | syl3anc 1249 |
. . . . . . 7
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘(𝑦(+g‘𝐺)𝑥)) = ((𝐼‘𝑥)(+g‘𝐺)(𝐼‘𝑦))) |
| 16 | 15 | fveq2d 5562 |
. . . . . 6
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘(𝐼‘(𝑦(+g‘𝐺)𝑥))) = (𝐼‘((𝐼‘𝑥)(+g‘𝐺)(𝐼‘𝑦)))) |
| 17 | | simpl 109 |
. . . . . . 7
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐼 ∈ (𝐺 GrpHom 𝐺)) |
| 18 | 1, 4 | grpinvcl 13180 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝐼‘𝑥) ∈ 𝐵) |
| 19 | 11, 13, 18 | syl2anc 411 |
. . . . . . 7
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘𝑥) ∈ 𝐵) |
| 20 | 1, 4 | grpinvcl 13180 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → (𝐼‘𝑦) ∈ 𝐵) |
| 21 | 11, 12, 20 | syl2anc 411 |
. . . . . . 7
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘𝑦) ∈ 𝐵) |
| 22 | 1, 2, 2 | ghmlin 13378 |
. . . . . . 7
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝐼‘𝑥) ∈ 𝐵 ∧ (𝐼‘𝑦) ∈ 𝐵) → (𝐼‘((𝐼‘𝑥)(+g‘𝐺)(𝐼‘𝑦))) = ((𝐼‘(𝐼‘𝑥))(+g‘𝐺)(𝐼‘(𝐼‘𝑦)))) |
| 23 | 17, 19, 21, 22 | syl3anc 1249 |
. . . . . 6
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘((𝐼‘𝑥)(+g‘𝐺)(𝐼‘𝑦))) = ((𝐼‘(𝐼‘𝑥))(+g‘𝐺)(𝐼‘(𝐼‘𝑦)))) |
| 24 | 1, 4 | grpinvinv 13199 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → (𝐼‘(𝐼‘𝑥)) = 𝑥) |
| 25 | 11, 13, 24 | syl2anc 411 |
. . . . . . 7
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘(𝐼‘𝑥)) = 𝑥) |
| 26 | 1, 4 | grpinvinv 13199 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → (𝐼‘(𝐼‘𝑦)) = 𝑦) |
| 27 | 11, 12, 26 | syl2anc 411 |
. . . . . . 7
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘(𝐼‘𝑦)) = 𝑦) |
| 28 | 25, 27 | oveq12d 5940 |
. . . . . 6
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐼‘(𝐼‘𝑥))(+g‘𝐺)(𝐼‘(𝐼‘𝑦))) = (𝑥(+g‘𝐺)𝑦)) |
| 29 | 16, 23, 28 | 3eqtrd 2233 |
. . . . 5
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘(𝐼‘(𝑦(+g‘𝐺)𝑥))) = (𝑥(+g‘𝐺)𝑦)) |
| 30 | 1, 2 | grpcl 13140 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑦(+g‘𝐺)𝑥) ∈ 𝐵) |
| 31 | 11, 12, 13, 30 | syl3anc 1249 |
. . . . . 6
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑦(+g‘𝐺)𝑥) ∈ 𝐵) |
| 32 | 1, 4 | grpinvinv 13199 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝑦(+g‘𝐺)𝑥) ∈ 𝐵) → (𝐼‘(𝐼‘(𝑦(+g‘𝐺)𝑥))) = (𝑦(+g‘𝐺)𝑥)) |
| 33 | 11, 31, 32 | syl2anc 411 |
. . . . 5
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐼‘(𝐼‘(𝑦(+g‘𝐺)𝑥))) = (𝑦(+g‘𝐺)𝑥)) |
| 34 | 29, 33 | eqtr3d 2231 |
. . . 4
⊢ ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 35 | 34 | ralrimivva 2579 |
. . 3
⊢ (𝐼 ∈ (𝐺 GrpHom 𝐺) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 36 | 1, 2 | isabl2 13424 |
. . 3
⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 37 | 10, 35, 36 | sylanbrc 417 |
. 2
⊢ (𝐼 ∈ (𝐺 GrpHom 𝐺) → 𝐺 ∈ Abel) |
| 38 | 9, 37 | impbii 126 |
1
⊢ (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺)) |