ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invghm GIF version

Theorem invghm 13459
Description: The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
invghm.b 𝐵 = (Base‘𝐺)
invghm.m 𝐼 = (invg𝐺)
Assertion
Ref Expression
invghm (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺))

Proof of Theorem invghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invghm.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2196 . . 3 (+g𝐺) = (+g𝐺)
3 ablgrp 13419 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
4 invghm.m . . . . 5 𝐼 = (invg𝐺)
51, 4grpinvf 13179 . . . 4 (𝐺 ∈ Grp → 𝐼:𝐵𝐵)
63, 5syl 14 . . 3 (𝐺 ∈ Abel → 𝐼:𝐵𝐵)
71, 2, 4ablinvadd 13440 . . . 4 ((𝐺 ∈ Abel ∧ 𝑥𝐵𝑦𝐵) → (𝐼‘(𝑥(+g𝐺)𝑦)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
873expb 1206 . . 3 ((𝐺 ∈ Abel ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝑥(+g𝐺)𝑦)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
91, 1, 2, 2, 3, 3, 6, 8isghmd 13382 . 2 (𝐺 ∈ Abel → 𝐼 ∈ (𝐺 GrpHom 𝐺))
10 ghmgrp1 13375 . . 3 (𝐼 ∈ (𝐺 GrpHom 𝐺) → 𝐺 ∈ Grp)
1110adantr 276 . . . . . . . 8 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
12 simprr 531 . . . . . . . 8 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
13 simprl 529 . . . . . . . 8 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
141, 2, 4grpinvadd 13210 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → (𝐼‘(𝑦(+g𝐺)𝑥)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
1511, 12, 13, 14syl3anc 1249 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝑦(+g𝐺)𝑥)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
1615fveq2d 5562 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝐼‘((𝐼𝑥)(+g𝐺)(𝐼𝑦))))
17 simpl 109 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝐼 ∈ (𝐺 GrpHom 𝐺))
181, 4grpinvcl 13180 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝐼𝑥) ∈ 𝐵)
1911, 13, 18syl2anc 411 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼𝑥) ∈ 𝐵)
201, 4grpinvcl 13180 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝐼𝑦) ∈ 𝐵)
2111, 12, 20syl2anc 411 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼𝑦) ∈ 𝐵)
221, 2, 2ghmlin 13378 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝐼𝑥) ∈ 𝐵 ∧ (𝐼𝑦) ∈ 𝐵) → (𝐼‘((𝐼𝑥)(+g𝐺)(𝐼𝑦))) = ((𝐼‘(𝐼𝑥))(+g𝐺)(𝐼‘(𝐼𝑦))))
2317, 19, 21, 22syl3anc 1249 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘((𝐼𝑥)(+g𝐺)(𝐼𝑦))) = ((𝐼‘(𝐼𝑥))(+g𝐺)(𝐼‘(𝐼𝑦))))
241, 4grpinvinv 13199 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝐼‘(𝐼𝑥)) = 𝑥)
2511, 13, 24syl2anc 411 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼𝑥)) = 𝑥)
261, 4grpinvinv 13199 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝐼‘(𝐼𝑦)) = 𝑦)
2711, 12, 26syl2anc 411 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼𝑦)) = 𝑦)
2825, 27oveq12d 5940 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐼‘(𝐼𝑥))(+g𝐺)(𝐼‘(𝐼𝑦))) = (𝑥(+g𝐺)𝑦))
2916, 23, 283eqtrd 2233 . . . . 5 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝑥(+g𝐺)𝑦))
301, 2grpcl 13140 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → (𝑦(+g𝐺)𝑥) ∈ 𝐵)
3111, 12, 13, 30syl3anc 1249 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦(+g𝐺)𝑥) ∈ 𝐵)
321, 4grpinvinv 13199 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑦(+g𝐺)𝑥) ∈ 𝐵) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝑦(+g𝐺)𝑥))
3311, 31, 32syl2anc 411 . . . . 5 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝑦(+g𝐺)𝑥))
3429, 33eqtr3d 2231 . . . 4 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
3534ralrimivva 2579 . . 3 (𝐼 ∈ (𝐺 GrpHom 𝐺) → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
361, 2isabl2 13424 . . 3 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
3710, 35, 36sylanbrc 417 . 2 (𝐼 ∈ (𝐺 GrpHom 𝐺) → 𝐺 ∈ Abel)
389, 37impbii 126 1 (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wf 5254  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  Grpcgrp 13132  invgcminusg 13133   GrpHom cghm 13370  Abelcabl 13415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-ghm 13371  df-cmn 13416  df-abl 13417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator