ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  invghm GIF version

Theorem invghm 13709
Description: The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
invghm.b 𝐵 = (Base‘𝐺)
invghm.m 𝐼 = (invg𝐺)
Assertion
Ref Expression
invghm (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺))

Proof of Theorem invghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invghm.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2206 . . 3 (+g𝐺) = (+g𝐺)
3 ablgrp 13669 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
4 invghm.m . . . . 5 𝐼 = (invg𝐺)
51, 4grpinvf 13423 . . . 4 (𝐺 ∈ Grp → 𝐼:𝐵𝐵)
63, 5syl 14 . . 3 (𝐺 ∈ Abel → 𝐼:𝐵𝐵)
71, 2, 4ablinvadd 13690 . . . 4 ((𝐺 ∈ Abel ∧ 𝑥𝐵𝑦𝐵) → (𝐼‘(𝑥(+g𝐺)𝑦)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
873expb 1207 . . 3 ((𝐺 ∈ Abel ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝑥(+g𝐺)𝑦)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
91, 1, 2, 2, 3, 3, 6, 8isghmd 13632 . 2 (𝐺 ∈ Abel → 𝐼 ∈ (𝐺 GrpHom 𝐺))
10 ghmgrp1 13625 . . 3 (𝐼 ∈ (𝐺 GrpHom 𝐺) → 𝐺 ∈ Grp)
1110adantr 276 . . . . . . . 8 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
12 simprr 531 . . . . . . . 8 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
13 simprl 529 . . . . . . . 8 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
141, 2, 4grpinvadd 13454 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → (𝐼‘(𝑦(+g𝐺)𝑥)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
1511, 12, 13, 14syl3anc 1250 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝑦(+g𝐺)𝑥)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
1615fveq2d 5587 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝐼‘((𝐼𝑥)(+g𝐺)(𝐼𝑦))))
17 simpl 109 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝐼 ∈ (𝐺 GrpHom 𝐺))
181, 4grpinvcl 13424 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝐼𝑥) ∈ 𝐵)
1911, 13, 18syl2anc 411 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼𝑥) ∈ 𝐵)
201, 4grpinvcl 13424 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝐼𝑦) ∈ 𝐵)
2111, 12, 20syl2anc 411 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼𝑦) ∈ 𝐵)
221, 2, 2ghmlin 13628 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝐼𝑥) ∈ 𝐵 ∧ (𝐼𝑦) ∈ 𝐵) → (𝐼‘((𝐼𝑥)(+g𝐺)(𝐼𝑦))) = ((𝐼‘(𝐼𝑥))(+g𝐺)(𝐼‘(𝐼𝑦))))
2317, 19, 21, 22syl3anc 1250 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘((𝐼𝑥)(+g𝐺)(𝐼𝑦))) = ((𝐼‘(𝐼𝑥))(+g𝐺)(𝐼‘(𝐼𝑦))))
241, 4grpinvinv 13443 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝐼‘(𝐼𝑥)) = 𝑥)
2511, 13, 24syl2anc 411 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼𝑥)) = 𝑥)
261, 4grpinvinv 13443 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝐼‘(𝐼𝑦)) = 𝑦)
2711, 12, 26syl2anc 411 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼𝑦)) = 𝑦)
2825, 27oveq12d 5969 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐼‘(𝐼𝑥))(+g𝐺)(𝐼‘(𝐼𝑦))) = (𝑥(+g𝐺)𝑦))
2916, 23, 283eqtrd 2243 . . . . 5 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝑥(+g𝐺)𝑦))
301, 2grpcl 13384 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → (𝑦(+g𝐺)𝑥) ∈ 𝐵)
3111, 12, 13, 30syl3anc 1250 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦(+g𝐺)𝑥) ∈ 𝐵)
321, 4grpinvinv 13443 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑦(+g𝐺)𝑥) ∈ 𝐵) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝑦(+g𝐺)𝑥))
3311, 31, 32syl2anc 411 . . . . 5 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝑦(+g𝐺)𝑥))
3429, 33eqtr3d 2241 . . . 4 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
3534ralrimivva 2589 . . 3 (𝐼 ∈ (𝐺 GrpHom 𝐺) → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
361, 2isabl2 13674 . . 3 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
3710, 35, 36sylanbrc 417 . 2 (𝐼 ∈ (𝐺 GrpHom 𝐺) → 𝐺 ∈ Abel)
389, 37impbii 126 1 (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485  wf 5272  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  Grpcgrp 13376  invgcminusg 13377   GrpHom cghm 13620  Abelcabl 13665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1re 8026  ax-addrcl 8029
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-inn 9044  df-2 9102  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-ghm 13621  df-cmn 13666  df-abl 13667
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator