ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ipcnval Unicode version

Theorem ipcnval 10843
Description: Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
ipcnval  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  =  ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( Im `  A )  x.  (
Im `  B )
) ) )

Proof of Theorem ipcnval
StepHypRef Expression
1 cjcl 10805 . . 3  |-  ( B  e.  CC  ->  (
* `  B )  e.  CC )
2 remul 10829 . . 3  |-  ( ( A  e.  CC  /\  ( * `  B
)  e.  CC )  ->  ( Re `  ( A  x.  (
* `  B )
) )  =  ( ( ( Re `  A )  x.  (
Re `  ( * `  B ) ) )  -  ( ( Im
`  A )  x.  ( Im `  (
* `  B )
) ) ) )
31, 2sylan2 284 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  =  ( ( ( Re `  A )  x.  ( Re `  ( * `  B
) ) )  -  ( ( Im `  A )  x.  (
Im `  ( * `  B ) ) ) ) )
4 recj 10824 . . . . 5  |-  ( B  e.  CC  ->  (
Re `  ( * `  B ) )  =  ( Re `  B
) )
54adantl 275 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  (
* `  B )
)  =  ( Re
`  B ) )
65oveq2d 5867 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Re `  ( * `  B ) ) )  =  ( ( Re
`  A )  x.  ( Re `  B
) ) )
7 imcj 10832 . . . . . 6  |-  ( B  e.  CC  ->  (
Im `  ( * `  B ) )  = 
-u ( Im `  B ) )
87adantl 275 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  (
* `  B )
)  =  -u (
Im `  B )
)
98oveq2d 5867 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  ( * `  B ) ) )  =  ( ( Im
`  A )  x.  -u ( Im `  B
) ) )
10 imcl 10811 . . . . . 6  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
1110recnd 7941 . . . . 5  |-  ( A  e.  CC  ->  (
Im `  A )  e.  CC )
12 imcl 10811 . . . . . 6  |-  ( B  e.  CC  ->  (
Im `  B )  e.  RR )
1312recnd 7941 . . . . 5  |-  ( B  e.  CC  ->  (
Im `  B )  e.  CC )
14 mulneg2 8308 . . . . 5  |-  ( ( ( Im `  A
)  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( ( Im `  A )  x.  -u (
Im `  B )
)  =  -u (
( Im `  A
)  x.  ( Im
`  B ) ) )
1511, 13, 14syl2an 287 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  -u (
Im `  B )
)  =  -u (
( Im `  A
)  x.  ( Im
`  B ) ) )
169, 15eqtrd 2203 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  ( * `  B ) ) )  =  -u ( ( Im
`  A )  x.  ( Im `  B
) ) )
176, 16oveq12d 5869 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  (
* `  B )
) )  -  (
( Im `  A
)  x.  ( Im
`  ( * `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  -u ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
18 recl 10810 . . . . 5  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
1918recnd 7941 . . . 4  |-  ( A  e.  CC  ->  (
Re `  A )  e.  CC )
20 recl 10810 . . . . 5  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
2120recnd 7941 . . . 4  |-  ( B  e.  CC  ->  (
Re `  B )  e.  CC )
22 mulcl 7894 . . . 4  |-  ( ( ( Re `  A
)  e.  CC  /\  ( Re `  B )  e.  CC )  -> 
( ( Re `  A )  x.  (
Re `  B )
)  e.  CC )
2319, 21, 22syl2an 287 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Re `  B )
)  e.  CC )
24 mulcl 7894 . . . 4  |-  ( ( ( Im `  A
)  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( ( Im `  A )  x.  (
Im `  B )
)  e.  CC )
2511, 13, 24syl2an 287 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  B )
)  e.  CC )
2623, 25subnegd 8230 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  -u (
( Im `  A
)  x.  ( Im
`  B ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
273, 17, 263eqtrd 2207 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  ( * `  B ) ) )  =  ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( Im `  A )  x.  (
Im `  B )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   ` cfv 5196  (class class class)co 5851   CCcc 7765    + caddc 7770    x. cmul 7772    - cmin 8083   -ucneg 8084   *ccj 10796   Recre 10797   Imcim 10798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-po 4279  df-iso 4280  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-2 8930  df-cj 10799  df-re 10800  df-im 10801
This theorem is referenced by:  cjmulval  10845  ipcni  10891  ipcnd  10924
  Copyright terms: Public domain W3C validator