ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ipcnval GIF version

Theorem ipcnval 10499
Description: Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
ipcnval ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))))

Proof of Theorem ipcnval
StepHypRef Expression
1 cjcl 10461 . . 3 (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ)
2 remul 10485 . . 3 ((𝐴 ∈ ℂ ∧ (∗‘𝐵) ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘(∗‘𝐵))) − ((ℑ‘𝐴) · (ℑ‘(∗‘𝐵)))))
31, 2sylan2 282 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘(∗‘𝐵))) − ((ℑ‘𝐴) · (ℑ‘(∗‘𝐵)))))
4 recj 10480 . . . . 5 (𝐵 ∈ ℂ → (ℜ‘(∗‘𝐵)) = (ℜ‘𝐵))
54adantl 273 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(∗‘𝐵)) = (ℜ‘𝐵))
65oveq2d 5722 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘(∗‘𝐵))) = ((ℜ‘𝐴) · (ℜ‘𝐵)))
7 imcj 10488 . . . . . 6 (𝐵 ∈ ℂ → (ℑ‘(∗‘𝐵)) = -(ℑ‘𝐵))
87adantl 273 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(∗‘𝐵)) = -(ℑ‘𝐵))
98oveq2d 5722 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘(∗‘𝐵))) = ((ℑ‘𝐴) · -(ℑ‘𝐵)))
10 imcl 10467 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
1110recnd 7666 . . . . 5 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
12 imcl 10467 . . . . . 6 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
1312recnd 7666 . . . . 5 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℂ)
14 mulneg2 8025 . . . . 5 (((ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → ((ℑ‘𝐴) · -(ℑ‘𝐵)) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
1511, 13, 14syl2an 285 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · -(ℑ‘𝐵)) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
169, 15eqtrd 2132 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘(∗‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
176, 16oveq12d 5724 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘(∗‘𝐵))) − ((ℑ‘𝐴) · (ℑ‘(∗‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − -((ℑ‘𝐴) · (ℑ‘𝐵))))
18 recl 10466 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1918recnd 7666 . . . 4 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
20 recl 10466 . . . . 5 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
2120recnd 7666 . . . 4 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℂ)
22 mulcl 7619 . . . 4 (((ℜ‘𝐴) ∈ ℂ ∧ (ℜ‘𝐵) ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ)
2319, 21, 22syl2an 285 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ)
24 mulcl 7619 . . . 4 (((ℑ‘𝐴) ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ)
2511, 13, 24syl2an 285 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ)
2623, 25subnegd 7951 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) − -((ℑ‘𝐴) · (ℑ‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))))
273, 17, 263eqtrd 2136 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wcel 1448  cfv 5059  (class class class)co 5706  cc 7498   + caddc 7503   · cmul 7505  cmin 7804  -cneg 7805  ccj 10452  cre 10453  cim 10454
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-2 8637  df-cj 10455  df-re 10456  df-im 10457
This theorem is referenced by:  cjmulval  10501  ipcni  10547  ipcnd  10580
  Copyright terms: Public domain W3C validator