| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recl | Unicode version | ||
| Description: The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
| Ref | Expression |
|---|---|
| recl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reval 11019 |
. 2
| |
| 2 | cjth 11016 |
. . . 4
| |
| 3 | 2 | simpld 112 |
. . 3
|
| 4 | 3 | rehalfcld 9243 |
. 2
|
| 5 | 1, 4 | eqeltrd 2273 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7975 ax-resscn 7976 ax-1cn 7977 ax-1re 7978 ax-icn 7979 ax-addcl 7980 ax-addrcl 7981 ax-mulcl 7982 ax-mulrcl 7983 ax-addcom 7984 ax-mulcom 7985 ax-addass 7986 ax-mulass 7987 ax-distr 7988 ax-i2m1 7989 ax-0lt1 7990 ax-1rid 7991 ax-0id 7992 ax-rnegex 7993 ax-precex 7994 ax-cnre 7995 ax-pre-ltirr 7996 ax-pre-ltwlin 7997 ax-pre-lttrn 7998 ax-pre-apti 7999 ax-pre-ltadd 8000 ax-pre-mulgt0 8001 ax-pre-mulext 8002 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8068 df-mnf 8069 df-xr 8070 df-ltxr 8071 df-le 8072 df-sub 8204 df-neg 8205 df-reap 8607 df-ap 8614 df-div 8705 df-2 9054 df-cj 11012 df-re 11013 |
| This theorem is referenced by: imcl 11024 ref 11025 crre 11027 remim 11030 reim0b 11032 rereb 11033 mulreap 11034 cjreb 11036 recj 11037 reneg 11038 readd 11039 resub 11040 remullem 11041 remul2 11043 redivap 11044 imcj 11045 imneg 11046 imadd 11047 immul2 11050 cjadd 11054 ipcnval 11056 cjmulval 11058 cjmulge0 11059 cjneg 11060 imval2 11064 cnrecnv 11080 recli 11081 recld 11108 cnreim 11148 abs00ap 11232 absrele 11253 releabs 11266 efeul 11904 absef 11940 absefib 11941 efieq1re 11942 abscxp 15198 |
| Copyright terms: Public domain | W3C validator |