ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recl Unicode version

Theorem recl 11364
Description: The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
recl  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )

Proof of Theorem recl
StepHypRef Expression
1 reval 11360 . 2  |-  ( A  e.  CC  ->  (
Re `  A )  =  ( ( A  +  ( * `  A ) )  / 
2 ) )
2 cjth 11357 . . . 4  |-  ( A  e.  CC  ->  (
( A  +  ( * `  A ) )  e.  RR  /\  ( _i  x.  ( A  -  ( * `  A ) ) )  e.  RR ) )
32simpld 112 . . 3  |-  ( A  e.  CC  ->  ( A  +  ( * `  A ) )  e.  RR )
43rehalfcld 9358 . 2  |-  ( A  e.  CC  ->  (
( A  +  ( * `  A ) )  /  2 )  e.  RR )
51, 4eqeltrd 2306 1  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   ` cfv 5318  (class class class)co 6001   CCcc 7997   RRcr 7998   _ici 8001    + caddc 8002    x. cmul 8004    - cmin 8317    / cdiv 8819   2c2 9161   *ccj 11350   Recre 11351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-2 9169  df-cj 11353  df-re 11354
This theorem is referenced by:  imcl  11365  ref  11366  crre  11368  remim  11371  reim0b  11373  rereb  11374  mulreap  11375  cjreb  11377  recj  11378  reneg  11379  readd  11380  resub  11381  remullem  11382  remul2  11384  redivap  11385  imcj  11386  imneg  11387  imadd  11388  immul2  11391  cjadd  11395  ipcnval  11397  cjmulval  11399  cjmulge0  11400  cjneg  11401  imval2  11405  cnrecnv  11421  recli  11422  recld  11449  cnreim  11489  abs00ap  11573  absrele  11594  releabs  11607  efeul  12245  absef  12281  absefib  12282  efieq1re  12283  abscxp  15589
  Copyright terms: Public domain W3C validator