ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imcl Unicode version

Theorem imcl 11198
Description: The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
imcl  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )

Proof of Theorem imcl
StepHypRef Expression
1 imre 11195 . 2  |-  ( A  e.  CC  ->  (
Im `  A )  =  ( Re `  ( -u _i  x.  A
) ) )
2 negicn 8275 . . . 4  |-  -u _i  e.  CC
3 mulcl 8054 . . . 4  |-  ( (
-u _i  e.  CC  /\  A  e.  CC )  ->  ( -u _i  x.  A )  e.  CC )
42, 3mpan 424 . . 3  |-  ( A  e.  CC  ->  ( -u _i  x.  A )  e.  CC )
5 recl 11197 . . 3  |-  ( (
-u _i  x.  A
)  e.  CC  ->  ( Re `  ( -u _i  x.  A ) )  e.  RR )
64, 5syl 14 . 2  |-  ( A  e.  CC  ->  (
Re `  ( -u _i  x.  A ) )  e.  RR )
71, 6eqeltrd 2282 1  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   ` cfv 5272  (class class class)co 5946   CCcc 7925   RRcr 7926   _ici 7929    x. cmul 7932   -ucneg 8246   Recre 11184   Imcim 11185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-po 4344  df-iso 4345  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-2 9097  df-cj 11186  df-re 11187  df-im 11188
This theorem is referenced by:  imf  11200  remim  11204  mulreap  11208  cjreb  11210  recj  11211  reneg  11212  readd  11213  remullem  11215  remul2  11217  imcj  11219  imneg  11220  imadd  11221  imsub  11222  immul2  11224  imdivap  11225  cjcj  11227  cjadd  11228  ipcnval  11230  cjmulval  11232  cjmulge0  11233  cjneg  11234  imval2  11238  cnrecnv  11254  imcli  11256  imcld  11283  cnreim  11322  abs00ap  11406  absrele  11427  efeul  12078  absef  12114  absefib  12115  efieq1re  12116
  Copyright terms: Public domain W3C validator