| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulneg2 | Unicode version | ||
| Description: The product with a negative is the negative of the product. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| mulneg2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulneg1 8469 |
. . 3
| |
| 2 | 1 | ancoms 268 |
. 2
|
| 3 | negcl 8274 |
. . 3
| |
| 4 | mulcom 8056 |
. . 3
| |
| 5 | 3, 4 | sylan2 286 |
. 2
|
| 6 | mulcom 8056 |
. . 3
| |
| 7 | 6 | negeqd 8269 |
. 2
|
| 8 | 2, 5, 7 | 3eqtr4d 2248 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-resscn 8019 ax-1cn 8020 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-sub 8247 df-neg 8248 |
| This theorem is referenced by: mulneg12 8471 submul2 8473 mulsub 8475 mulneg2i 8479 mulneg2d 8486 zmulcl 9428 binom2sub 10800 cjreb 11210 recj 11211 reneg 11212 imcj 11219 imneg 11220 ipcnval 11230 cjneg 11234 efexp 12026 efmival 12077 sinsub 12084 cossub 12085 odd2np1 12217 sinperlem 15313 efimpi 15324 |
| Copyright terms: Public domain | W3C validator |