ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulneg2 Unicode version

Theorem mulneg2 8308
Description: The product with a negative is the negative of the product. (Contributed by NM, 30-Jul-2004.)
Assertion
Ref Expression
mulneg2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  -u B
)  =  -u ( A  x.  B )
)

Proof of Theorem mulneg2
StepHypRef Expression
1 mulneg1 8307 . . 3  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( -u B  x.  A )  =  -u ( B  x.  A
) )
21ancoms 266 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u B  x.  A )  =  -u ( B  x.  A
) )
3 negcl 8112 . . 3  |-  ( B  e.  CC  ->  -u B  e.  CC )
4 mulcom 7896 . . 3  |-  ( ( A  e.  CC  /\  -u B  e.  CC )  ->  ( A  x.  -u B )  =  (
-u B  x.  A
) )
53, 4sylan2 284 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  -u B
)  =  ( -u B  x.  A )
)
6 mulcom 7896 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
76negeqd 8107 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  x.  B )  =  -u ( B  x.  A
) )
82, 5, 73eqtr4d 2213 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  -u B
)  =  -u ( A  x.  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141  (class class class)co 5851   CCcc 7765    x. cmul 7772   -ucneg 8084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-setind 4519  ax-resscn 7859  ax-1cn 7860  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-distr 7871  ax-i2m1 7872  ax-0id 7875  ax-rnegex 7876  ax-cnre 7878
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-sub 8085  df-neg 8086
This theorem is referenced by:  mulneg12  8309  submul2  8311  mulsub  8313  mulneg2i  8317  mulneg2d  8324  zmulcl  9258  binom2sub  10582  cjreb  10823  recj  10824  reneg  10825  imcj  10832  imneg  10833  ipcnval  10843  cjneg  10847  efexp  11638  efmival  11689  sinsub  11696  cossub  11697  odd2np1  11825  sinperlem  13488  efimpi  13499
  Copyright terms: Public domain W3C validator