Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulneg2 | Unicode version |
Description: The product with a negative is the negative of the product. (Contributed by NM, 30-Jul-2004.) |
Ref | Expression |
---|---|
mulneg2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulneg1 8307 | . . 3 | |
2 | 1 | ancoms 266 | . 2 |
3 | negcl 8112 | . . 3 | |
4 | mulcom 7896 | . . 3 | |
5 | 3, 4 | sylan2 284 | . 2 |
6 | mulcom 7896 | . . 3 | |
7 | 6 | negeqd 8107 | . 2 |
8 | 2, 5, 7 | 3eqtr4d 2213 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 (class class class)co 5851 cc 7765 cmul 7772 cneg 8084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-setind 4519 ax-resscn 7859 ax-1cn 7860 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-addcom 7867 ax-mulcom 7868 ax-addass 7869 ax-distr 7871 ax-i2m1 7872 ax-0id 7875 ax-rnegex 7876 ax-cnre 7878 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-sub 8085 df-neg 8086 |
This theorem is referenced by: mulneg12 8309 submul2 8311 mulsub 8313 mulneg2i 8317 mulneg2d 8324 zmulcl 9258 binom2sub 10582 cjreb 10823 recj 10824 reneg 10825 imcj 10832 imneg 10833 ipcnval 10843 cjneg 10847 efexp 11638 efmival 11689 sinsub 11696 cossub 11697 odd2np1 11825 sinperlem 13488 efimpi 13499 |
Copyright terms: Public domain | W3C validator |