ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltleap Unicode version

Theorem ltleap 8107
Description: Less than in terms of non-strict order and apartness. (Contributed by Jim Kingdon, 28-Feb-2020.)
Assertion
Ref Expression
ltleap  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( A  <_  B  /\  A #  B ) ) )

Proof of Theorem ltleap
StepHypRef Expression
1 ltle 7572 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
2 orc 668 . . . 4  |-  ( A  <  B  ->  ( A  <  B  \/  B  <  A ) )
3 reaplt 8065 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  <  B  \/  B  < 
A ) ) )
42, 3syl5ibr 154 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A #  B ) )
51, 4jcad 301 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  ( A  <_  B  /\  A #  B )
) )
6 simprl 498 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  B  /\  A #  B ) )  ->  A  <_  B )
7 lenlt 7561 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
87adantr 270 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  B  /\  A #  B ) )  ->  ( A  <_  B  <->  -.  B  <  A ) )
96, 8mpbid 145 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  B  /\  A #  B ) )  ->  -.  B  <  A )
10 simprr 499 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  B  /\  A #  B ) )  ->  A #  B
)
113adantr 270 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  B  /\  A #  B ) )  ->  ( A #  B 
<->  ( A  <  B  \/  B  <  A ) ) )
1210, 11mpbid 145 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  B  /\  A #  B ) )  ->  ( A  <  B  \/  B  < 
A ) )
139, 12ecased 1285 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  B  /\  A #  B ) )  ->  A  <  B )
1413ex 113 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <_  B  /\  A #  B )  ->  A  <  B
) )
155, 14impbid 127 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( A  <_  B  /\  A #  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 664    e. wcel 1438   class class class wbr 3845   RRcr 7349    < clt 7522    <_ cle 7523   # cap 8058
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-mulrcl 7444  ax-addcom 7445  ax-mulcom 7446  ax-addass 7447  ax-mulass 7448  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-1rid 7452  ax-0id 7453  ax-rnegex 7454  ax-precex 7455  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461  ax-pre-mulgt0 7462
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-iota 4980  df-fun 5017  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-reap 8052  df-ap 8059
This theorem is referenced by:  recgt0  8311  prodgt0  8313  lt2msq  8347  zltlen  8825  qltlen  9125  egt2lt3  11067
  Copyright terms: Public domain W3C validator