ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmcn GIF version

Theorem lmcn 14595
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.)
Hypotheses
Ref Expression
lmcnp.3 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmcn.4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
lmcn (𝜑 → (𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃))

Proof of Theorem lmcn
StepHypRef Expression
1 lmcnp.3 . 2 (𝜑𝐹(⇝𝑡𝐽)𝑃)
2 lmcn.4 . . 3 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
3 cntop2 14546 . . 3 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
42, 3syl 14 . 2 (𝜑𝐾 ∈ Top)
5 cntop1 14545 . . . . . 6 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
62, 5syl 14 . . . . 5 (𝜑𝐽 ∈ Top)
7 toptopon2 14363 . . . . 5 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
86, 7sylib 122 . . . 4 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
9 lmcl 14589 . . . 4 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝑃 𝐽)
108, 1, 9syl2anc 411 . . 3 (𝜑𝑃 𝐽)
11 eqid 2196 . . . 4 𝐽 = 𝐽
1211cncnpi 14572 . . 3 ((𝐺 ∈ (𝐽 Cn 𝐾) ∧ 𝑃 𝐽) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃))
132, 10, 12syl2anc 411 . 2 (𝜑𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃))
141, 4, 13lmtopcnp 14594 1 (𝜑 → (𝐺𝐹)(⇝𝑡𝐾)(𝐺𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167   cuni 3840   class class class wbr 4034  ccom 4668  cfv 5259  (class class class)co 5925  Topctop 14341  TopOnctopon 14354   Cn ccn 14529   CnP ccnp 14530  𝑡clm 14531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pm 6719  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-n0 9269  df-z 9346  df-uz 9621  df-top 14342  df-topon 14355  df-cn 14532  df-cnp 14533  df-lm 14534
This theorem is referenced by:  lmcn2  14624
  Copyright terms: Public domain W3C validator