| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmcn | GIF version | ||
| Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.) |
| Ref | Expression |
|---|---|
| lmcnp.3 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| lmcn.4 | ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
| Ref | Expression |
|---|---|
| lmcn | ⊢ (𝜑 → (𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmcnp.3 | . 2 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 2 | lmcn.4 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) | |
| 3 | cntop2 14841 | . . 3 ⊢ (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 5 | cntop1 14840 | . . . . . 6 ⊢ (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 6 | 2, 5 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 7 | toptopon2 14658 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 8 | 6, 7 | sylib 122 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 9 | lmcl 14884 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ ∪ 𝐽) | |
| 10 | 8, 1, 9 | syl2anc 411 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ∪ 𝐽) |
| 11 | eqid 2209 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 12 | 11 | cncnpi 14867 | . . 3 ⊢ ((𝐺 ∈ (𝐽 Cn 𝐾) ∧ 𝑃 ∈ ∪ 𝐽) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
| 13 | 2, 10, 12 | syl2anc 411 | . 2 ⊢ (𝜑 → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
| 14 | 1, 4, 13 | lmtopcnp 14889 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ∪ cuni 3867 class class class wbr 4062 ∘ ccom 4700 ‘cfv 5294 (class class class)co 5974 Topctop 14636 TopOnctopon 14649 Cn ccn 14824 CnP ccnp 14825 ⇝𝑡clm 14826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-map 6767 df-pm 6768 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-inn 9079 df-n0 9338 df-z 9415 df-uz 9691 df-top 14637 df-topon 14650 df-cn 14827 df-cnp 14828 df-lm 14829 |
| This theorem is referenced by: lmcn2 14919 |
| Copyright terms: Public domain | W3C validator |