| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmcn | GIF version | ||
| Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.) |
| Ref | Expression |
|---|---|
| lmcnp.3 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| lmcn.4 | ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
| Ref | Expression |
|---|---|
| lmcn | ⊢ (𝜑 → (𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmcnp.3 | . 2 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 2 | lmcn.4 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) | |
| 3 | cntop2 14438 | . . 3 ⊢ (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 5 | cntop1 14437 | . . . . . 6 ⊢ (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 6 | 2, 5 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 7 | toptopon2 14255 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 8 | 6, 7 | sylib 122 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 9 | lmcl 14481 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ ∪ 𝐽) | |
| 10 | 8, 1, 9 | syl2anc 411 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ∪ 𝐽) |
| 11 | eqid 2196 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 12 | 11 | cncnpi 14464 | . . 3 ⊢ ((𝐺 ∈ (𝐽 Cn 𝐾) ∧ 𝑃 ∈ ∪ 𝐽) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
| 13 | 2, 10, 12 | syl2anc 411 | . 2 ⊢ (𝜑 → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
| 14 | 1, 4, 13 | lmtopcnp 14486 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∪ cuni 3839 class class class wbr 4033 ∘ ccom 4667 ‘cfv 5258 (class class class)co 5922 Topctop 14233 TopOnctopon 14246 Cn ccn 14421 CnP ccnp 14422 ⇝𝑡clm 14423 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 df-pm 6710 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-top 14234 df-topon 14247 df-cn 14424 df-cnp 14425 df-lm 14426 |
| This theorem is referenced by: lmcn2 14516 |
| Copyright terms: Public domain | W3C validator |