Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lmcn | GIF version |
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.) |
Ref | Expression |
---|---|
lmcnp.3 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
lmcn.4 | ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
Ref | Expression |
---|---|
lmcn | ⊢ (𝜑 → (𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmcnp.3 | . 2 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
2 | lmcn.4 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) | |
3 | cntop2 12996 | . . 3 ⊢ (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (𝜑 → 𝐾 ∈ Top) |
5 | cntop1 12995 | . . . . . 6 ⊢ (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
6 | 2, 5 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) |
7 | toptopon2 12811 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
8 | 6, 7 | sylib 121 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
9 | lmcl 13039 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ ∪ 𝐽) | |
10 | 8, 1, 9 | syl2anc 409 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ∪ 𝐽) |
11 | eqid 2170 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
12 | 11 | cncnpi 13022 | . . 3 ⊢ ((𝐺 ∈ (𝐽 Cn 𝐾) ∧ 𝑃 ∈ ∪ 𝐽) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
13 | 2, 10, 12 | syl2anc 409 | . 2 ⊢ (𝜑 → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
14 | 1, 4, 13 | lmtopcnp 13044 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ∪ cuni 3796 class class class wbr 3989 ∘ ccom 4615 ‘cfv 5198 (class class class)co 5853 Topctop 12789 TopOnctopon 12802 Cn ccn 12979 CnP ccnp 12980 ⇝𝑡clm 12981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-pm 6629 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-top 12790 df-topon 12803 df-cn 12982 df-cnp 12983 df-lm 12984 |
This theorem is referenced by: lmcn2 13074 |
Copyright terms: Public domain | W3C validator |