| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmcn | GIF version | ||
| Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. (Contributed by Mario Carneiro, 3-May-2014.) |
| Ref | Expression |
|---|---|
| lmcnp.3 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| lmcn.4 | ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
| Ref | Expression |
|---|---|
| lmcn | ⊢ (𝜑 → (𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmcnp.3 | . 2 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 2 | lmcn.4 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) | |
| 3 | cntop2 14522 | . . 3 ⊢ (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 5 | cntop1 14521 | . . . . . 6 ⊢ (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 6 | 2, 5 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 7 | toptopon2 14339 | . . . . 5 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) | |
| 8 | 6, 7 | sylib 122 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 9 | lmcl 14565 | . . . 4 ⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ ∪ 𝐽) | |
| 10 | 8, 1, 9 | syl2anc 411 | . . 3 ⊢ (𝜑 → 𝑃 ∈ ∪ 𝐽) |
| 11 | eqid 2196 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 12 | 11 | cncnpi 14548 | . . 3 ⊢ ((𝐺 ∈ (𝐽 Cn 𝐾) ∧ 𝑃 ∈ ∪ 𝐽) → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
| 13 | 2, 10, 12 | syl2anc 411 | . 2 ⊢ (𝜑 → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) |
| 14 | 1, 4, 13 | lmtopcnp 14570 | 1 ⊢ (𝜑 → (𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∪ cuni 3840 class class class wbr 4034 ∘ ccom 4668 ‘cfv 5259 (class class class)co 5925 Topctop 14317 TopOnctopon 14330 Cn ccn 14505 CnP ccnp 14506 ⇝𝑡clm 14507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-pm 6719 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-top 14318 df-topon 14331 df-cn 14508 df-cnp 14509 df-lm 14510 |
| This theorem is referenced by: lmcn2 14600 |
| Copyright terms: Public domain | W3C validator |