ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2mul2div Unicode version

Theorem lt2mul2div 9022
Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 8-Jan-2006.)
Assertion
Ref Expression
lt2mul2div  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( A  x.  B )  < 
( C  x.  D
)  <->  ( A  /  D )  <  ( C  /  B ) ) )

Proof of Theorem lt2mul2div
StepHypRef Expression
1 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  C  e.  RR )
21recnd 8171 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  C  e.  CC )
3 simprrl 539 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  D  e.  RR )
43recnd 8171 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  D  e.  CC )
52, 4mulcomd 8164 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( C  x.  D )  =  ( D  x.  C ) )
65oveq1d 6015 . . . 4  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( C  x.  D )  /  B )  =  ( ( D  x.  C
)  /  B ) )
7 simplrl 535 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  B  e.  RR )
87recnd 8171 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  B  e.  CC )
9 simplrr 536 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  0  <  B
)
107, 9gt0ap0d 8772 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  B #  0 )
114, 2, 8, 10divassapd 8969 . . . 4  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( D  x.  C )  /  B )  =  ( D  x.  ( C  /  B ) ) )
126, 11eqtrd 2262 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( C  x.  D )  /  B )  =  ( D  x.  ( C  /  B ) ) )
1312breq2d 4094 . 2  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( A  < 
( ( C  x.  D )  /  B
)  <->  A  <  ( D  x.  ( C  /  B ) ) ) )
14 simpll 527 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  A  e.  RR )
151, 3remulcld 8173 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( C  x.  D )  e.  RR )
16 simplr 528 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( B  e.  RR  /\  0  < 
B ) )
17 ltmuldiv 9017 . . 3  |-  ( ( A  e.  RR  /\  ( C  x.  D
)  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  x.  B )  <  ( C  x.  D
)  <->  A  <  ( ( C  x.  D )  /  B ) ) )
1814, 15, 16, 17syl3anc 1271 . 2  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( A  x.  B )  < 
( C  x.  D
)  <->  A  <  ( ( C  x.  D )  /  B ) ) )
191, 7, 10redivclapd 8978 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( C  /  B )  e.  RR )
20 simprr 531 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( D  e.  RR  /\  0  < 
D ) )
21 ltdivmul 9019 . . 3  |-  ( ( A  e.  RR  /\  ( C  /  B
)  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) )  ->  ( ( A  /  D )  < 
( C  /  B
)  <->  A  <  ( D  x.  ( C  /  B ) ) ) )
2214, 19, 20, 21syl3anc 1271 . 2  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( A  /  D )  < 
( C  /  B
)  <->  A  <  ( D  x.  ( C  /  B ) ) ) )
2313, 18, 223bitr4d 220 1  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( A  x.  B )  < 
( C  x.  D
)  <->  ( A  /  D )  <  ( C  /  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   RRcr 7994   0cc0 7995    x. cmul 8000    < clt 8177    / cdiv 8815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816
This theorem is referenced by:  lt2mul2divd  9957
  Copyright terms: Public domain W3C validator