ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2mul2div Unicode version

Theorem lt2mul2div 8825
Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 8-Jan-2006.)
Assertion
Ref Expression
lt2mul2div  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( A  x.  B )  < 
( C  x.  D
)  <->  ( A  /  D )  <  ( C  /  B ) ) )

Proof of Theorem lt2mul2div
StepHypRef Expression
1 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  C  e.  RR )
21recnd 7976 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  C  e.  CC )
3 simprrl 539 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  D  e.  RR )
43recnd 7976 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  D  e.  CC )
52, 4mulcomd 7969 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( C  x.  D )  =  ( D  x.  C ) )
65oveq1d 5884 . . . 4  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( C  x.  D )  /  B )  =  ( ( D  x.  C
)  /  B ) )
7 simplrl 535 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  B  e.  RR )
87recnd 7976 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  B  e.  CC )
9 simplrr 536 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  0  <  B
)
107, 9gt0ap0d 8576 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  B #  0 )
114, 2, 8, 10divassapd 8772 . . . 4  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( D  x.  C )  /  B )  =  ( D  x.  ( C  /  B ) ) )
126, 11eqtrd 2210 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( C  x.  D )  /  B )  =  ( D  x.  ( C  /  B ) ) )
1312breq2d 4012 . 2  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( A  < 
( ( C  x.  D )  /  B
)  <->  A  <  ( D  x.  ( C  /  B ) ) ) )
14 simpll 527 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  A  e.  RR )
151, 3remulcld 7978 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( C  x.  D )  e.  RR )
16 simplr 528 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( B  e.  RR  /\  0  < 
B ) )
17 ltmuldiv 8820 . . 3  |-  ( ( A  e.  RR  /\  ( C  x.  D
)  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  x.  B )  <  ( C  x.  D
)  <->  A  <  ( ( C  x.  D )  /  B ) ) )
1814, 15, 16, 17syl3anc 1238 . 2  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( A  x.  B )  < 
( C  x.  D
)  <->  A  <  ( ( C  x.  D )  /  B ) ) )
191, 7, 10redivclapd 8781 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( C  /  B )  e.  RR )
20 simprr 531 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( D  e.  RR  /\  0  < 
D ) )
21 ltdivmul 8822 . . 3  |-  ( ( A  e.  RR  /\  ( C  /  B
)  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) )  ->  ( ( A  /  D )  < 
( C  /  B
)  <->  A  <  ( D  x.  ( C  /  B ) ) ) )
2214, 19, 20, 21syl3anc 1238 . 2  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( A  /  D )  < 
( C  /  B
)  <->  A  <  ( D  x.  ( C  /  B ) ) ) )
2313, 18, 223bitr4d 220 1  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( A  x.  B )  < 
( C  x.  D
)  <->  ( A  /  D )  <  ( C  /  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   class class class wbr 4000  (class class class)co 5869   RRcr 7801   0cc0 7802    x. cmul 7807    < clt 7982    / cdiv 8618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619
This theorem is referenced by:  lt2mul2divd  9752
  Copyright terms: Public domain W3C validator