ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2mul2div Unicode version

Theorem lt2mul2div 8923
Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 8-Jan-2006.)
Assertion
Ref Expression
lt2mul2div  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( A  x.  B )  < 
( C  x.  D
)  <->  ( A  /  D )  <  ( C  /  B ) ) )

Proof of Theorem lt2mul2div
StepHypRef Expression
1 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  C  e.  RR )
21recnd 8072 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  C  e.  CC )
3 simprrl 539 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  D  e.  RR )
43recnd 8072 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  D  e.  CC )
52, 4mulcomd 8065 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( C  x.  D )  =  ( D  x.  C ) )
65oveq1d 5940 . . . 4  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( C  x.  D )  /  B )  =  ( ( D  x.  C
)  /  B ) )
7 simplrl 535 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  B  e.  RR )
87recnd 8072 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  B  e.  CC )
9 simplrr 536 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  0  <  B
)
107, 9gt0ap0d 8673 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  B #  0 )
114, 2, 8, 10divassapd 8870 . . . 4  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( D  x.  C )  /  B )  =  ( D  x.  ( C  /  B ) ) )
126, 11eqtrd 2229 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( C  x.  D )  /  B )  =  ( D  x.  ( C  /  B ) ) )
1312breq2d 4046 . 2  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( A  < 
( ( C  x.  D )  /  B
)  <->  A  <  ( D  x.  ( C  /  B ) ) ) )
14 simpll 527 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  A  e.  RR )
151, 3remulcld 8074 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( C  x.  D )  e.  RR )
16 simplr 528 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( B  e.  RR  /\  0  < 
B ) )
17 ltmuldiv 8918 . . 3  |-  ( ( A  e.  RR  /\  ( C  x.  D
)  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  x.  B )  <  ( C  x.  D
)  <->  A  <  ( ( C  x.  D )  /  B ) ) )
1814, 15, 16, 17syl3anc 1249 . 2  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( A  x.  B )  < 
( C  x.  D
)  <->  A  <  ( ( C  x.  D )  /  B ) ) )
191, 7, 10redivclapd 8879 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( C  /  B )  e.  RR )
20 simprr 531 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( D  e.  RR  /\  0  < 
D ) )
21 ltdivmul 8920 . . 3  |-  ( ( A  e.  RR  /\  ( C  /  B
)  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) )  ->  ( ( A  /  D )  < 
( C  /  B
)  <->  A  <  ( D  x.  ( C  /  B ) ) ) )
2214, 19, 20, 21syl3anc 1249 . 2  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( A  /  D )  < 
( C  /  B
)  <->  A  <  ( D  x.  ( C  /  B ) ) ) )
2313, 18, 223bitr4d 220 1  |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  ( ( A  x.  B )  < 
( C  x.  D
)  <->  ( A  /  D )  <  ( C  /  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   RRcr 7895   0cc0 7896    x. cmul 7901    < clt 8078    / cdiv 8716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717
This theorem is referenced by:  lt2mul2divd  9857
  Copyright terms: Public domain W3C validator