Proof of Theorem lt2mul2div
Step | Hyp | Ref
| Expression |
1 | | simprl 526 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 𝐶 ∈
ℝ) |
2 | 1 | recnd 7948 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 𝐶 ∈
ℂ) |
3 | | simprrl 534 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 𝐷 ∈
ℝ) |
4 | 3 | recnd 7948 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 𝐷 ∈
ℂ) |
5 | 2, 4 | mulcomd 7941 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → (𝐶 · 𝐷) = (𝐷 · 𝐶)) |
6 | 5 | oveq1d 5868 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → ((𝐶 · 𝐷) / 𝐵) = ((𝐷 · 𝐶) / 𝐵)) |
7 | | simplrl 530 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 𝐵 ∈
ℝ) |
8 | 7 | recnd 7948 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 𝐵 ∈
ℂ) |
9 | | simplrr 531 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 0 < 𝐵) |
10 | 7, 9 | gt0ap0d 8548 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 𝐵 # 0) |
11 | 4, 2, 8, 10 | divassapd 8743 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → ((𝐷 · 𝐶) / 𝐵) = (𝐷 · (𝐶 / 𝐵))) |
12 | 6, 11 | eqtrd 2203 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → ((𝐶 · 𝐷) / 𝐵) = (𝐷 · (𝐶 / 𝐵))) |
13 | 12 | breq2d 4001 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → (𝐴 < ((𝐶 · 𝐷) / 𝐵) ↔ 𝐴 < (𝐷 · (𝐶 / 𝐵)))) |
14 | | simpll 524 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 𝐴 ∈
ℝ) |
15 | 1, 3 | remulcld 7950 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → (𝐶 · 𝐷) ∈ ℝ) |
16 | | simplr 525 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → (𝐵 ∈ ℝ ∧ 0 <
𝐵)) |
17 | | ltmuldiv 8790 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 · 𝐷) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ 𝐴 < ((𝐶 · 𝐷) / 𝐵))) |
18 | 14, 15, 16, 17 | syl3anc 1233 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ 𝐴 < ((𝐶 · 𝐷) / 𝐵))) |
19 | 1, 7, 10 | redivclapd 8752 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → (𝐶 / 𝐵) ∈ ℝ) |
20 | | simprr 527 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → (𝐷 ∈ ℝ ∧ 0 <
𝐷)) |
21 | | ltdivmul 8792 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → ((𝐴 / 𝐷) < (𝐶 / 𝐵) ↔ 𝐴 < (𝐷 · (𝐶 / 𝐵)))) |
22 | 14, 19, 20, 21 | syl3anc 1233 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → ((𝐴 / 𝐷) < (𝐶 / 𝐵) ↔ 𝐴 < (𝐷 · (𝐶 / 𝐵)))) |
23 | 13, 18, 22 | 3bitr4d 219 |
1
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵))) |