ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2mul2div GIF version

Theorem lt2mul2div 8637
Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 8-Jan-2006.)
Assertion
Ref Expression
lt2mul2div (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵)))

Proof of Theorem lt2mul2div
StepHypRef Expression
1 simprl 520 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → 𝐶 ∈ ℝ)
21recnd 7794 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → 𝐶 ∈ ℂ)
3 simprrl 528 . . . . . . 7 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → 𝐷 ∈ ℝ)
43recnd 7794 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → 𝐷 ∈ ℂ)
52, 4mulcomd 7787 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → (𝐶 · 𝐷) = (𝐷 · 𝐶))
65oveq1d 5789 . . . 4 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐶 · 𝐷) / 𝐵) = ((𝐷 · 𝐶) / 𝐵))
7 simplrl 524 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → 𝐵 ∈ ℝ)
87recnd 7794 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → 𝐵 ∈ ℂ)
9 simplrr 525 . . . . . 6 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → 0 < 𝐵)
107, 9gt0ap0d 8391 . . . . 5 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → 𝐵 # 0)
114, 2, 8, 10divassapd 8586 . . . 4 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐷 · 𝐶) / 𝐵) = (𝐷 · (𝐶 / 𝐵)))
126, 11eqtrd 2172 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐶 · 𝐷) / 𝐵) = (𝐷 · (𝐶 / 𝐵)))
1312breq2d 3941 . 2 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → (𝐴 < ((𝐶 · 𝐷) / 𝐵) ↔ 𝐴 < (𝐷 · (𝐶 / 𝐵))))
14 simpll 518 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → 𝐴 ∈ ℝ)
151, 3remulcld 7796 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → (𝐶 · 𝐷) ∈ ℝ)
16 simplr 519 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
17 ltmuldiv 8632 . . 3 ((𝐴 ∈ ℝ ∧ (𝐶 · 𝐷) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ 𝐴 < ((𝐶 · 𝐷) / 𝐵)))
1814, 15, 16, 17syl3anc 1216 . 2 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ 𝐴 < ((𝐶 · 𝐷) / 𝐵)))
191, 7, 10redivclapd 8594 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → (𝐶 / 𝐵) ∈ ℝ)
20 simprr 521 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → (𝐷 ∈ ℝ ∧ 0 < 𝐷))
21 ltdivmul 8634 . . 3 ((𝐴 ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → ((𝐴 / 𝐷) < (𝐶 / 𝐵) ↔ 𝐴 < (𝐷 · (𝐶 / 𝐵))))
2214, 19, 20, 21syl3anc 1216 . 2 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐷) < (𝐶 / 𝐵) ↔ 𝐴 < (𝐷 · (𝐶 / 𝐵))))
2313, 18, 223bitr4d 219 1 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1480   class class class wbr 3929  (class class class)co 5774  cr 7619  0cc0 7620   · cmul 7625   < clt 7800   / cdiv 8432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433
This theorem is referenced by:  lt2mul2divd  9552
  Copyright terms: Public domain W3C validator