Proof of Theorem lt2mul2div
| Step | Hyp | Ref
 | Expression | 
| 1 |   | simprl 529 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 𝐶 ∈
ℝ) | 
| 2 | 1 | recnd 8055 | 
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 𝐶 ∈
ℂ) | 
| 3 |   | simprrl 539 | 
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 𝐷 ∈
ℝ) | 
| 4 | 3 | recnd 8055 | 
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 𝐷 ∈
ℂ) | 
| 5 | 2, 4 | mulcomd 8048 | 
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → (𝐶 · 𝐷) = (𝐷 · 𝐶)) | 
| 6 | 5 | oveq1d 5937 | 
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → ((𝐶 · 𝐷) / 𝐵) = ((𝐷 · 𝐶) / 𝐵)) | 
| 7 |   | simplrl 535 | 
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 𝐵 ∈
ℝ) | 
| 8 | 7 | recnd 8055 | 
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 𝐵 ∈
ℂ) | 
| 9 |   | simplrr 536 | 
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 0 < 𝐵) | 
| 10 | 7, 9 | gt0ap0d 8656 | 
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 𝐵 # 0) | 
| 11 | 4, 2, 8, 10 | divassapd 8853 | 
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → ((𝐷 · 𝐶) / 𝐵) = (𝐷 · (𝐶 / 𝐵))) | 
| 12 | 6, 11 | eqtrd 2229 | 
. . 3
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → ((𝐶 · 𝐷) / 𝐵) = (𝐷 · (𝐶 / 𝐵))) | 
| 13 | 12 | breq2d 4045 | 
. 2
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → (𝐴 < ((𝐶 · 𝐷) / 𝐵) ↔ 𝐴 < (𝐷 · (𝐶 / 𝐵)))) | 
| 14 |   | simpll 527 | 
. . 3
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → 𝐴 ∈
ℝ) | 
| 15 | 1, 3 | remulcld 8057 | 
. . 3
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → (𝐶 · 𝐷) ∈ ℝ) | 
| 16 |   | simplr 528 | 
. . 3
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → (𝐵 ∈ ℝ ∧ 0 <
𝐵)) | 
| 17 |   | ltmuldiv 8901 | 
. . 3
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 · 𝐷) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ 𝐴 < ((𝐶 · 𝐷) / 𝐵))) | 
| 18 | 14, 15, 16, 17 | syl3anc 1249 | 
. 2
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ 𝐴 < ((𝐶 · 𝐷) / 𝐵))) | 
| 19 | 1, 7, 10 | redivclapd 8862 | 
. . 3
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → (𝐶 / 𝐵) ∈ ℝ) | 
| 20 |   | simprr 531 | 
. . 3
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → (𝐷 ∈ ℝ ∧ 0 <
𝐷)) | 
| 21 |   | ltdivmul 8903 | 
. . 3
⊢ ((𝐴 ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → ((𝐴 / 𝐷) < (𝐶 / 𝐵) ↔ 𝐴 < (𝐷 · (𝐶 / 𝐵)))) | 
| 22 | 14, 19, 20, 21 | syl3anc 1249 | 
. 2
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → ((𝐴 / 𝐷) < (𝐶 / 𝐵) ↔ 𝐴 < (𝐷 · (𝐶 / 𝐵)))) | 
| 23 | 13, 18, 22 | 3bitr4d 220 | 
1
⊢ (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 <
𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 <
𝐷))) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵))) |