![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > redivclapd | Unicode version |
Description: Closure law for division of reals. (Contributed by Jim Kingdon, 29-Feb-2020.) |
Ref | Expression |
---|---|
redivclapd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
redivclapd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
redivclapd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
redivclapd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | redivclapd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | redivclapd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | redivclapd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | redivclap 8740 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | syl3anc 1249 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4462 ax-setind 4565 ax-cnex 7953 ax-resscn 7954 ax-1cn 7955 ax-1re 7956 ax-icn 7957 ax-addcl 7958 ax-addrcl 7959 ax-mulcl 7960 ax-mulrcl 7961 ax-addcom 7962 ax-mulcom 7963 ax-addass 7964 ax-mulass 7965 ax-distr 7966 ax-i2m1 7967 ax-0lt1 7968 ax-1rid 7969 ax-0id 7970 ax-rnegex 7971 ax-precex 7972 ax-cnre 7973 ax-pre-ltirr 7974 ax-pre-ltwlin 7975 ax-pre-lttrn 7976 ax-pre-apti 7977 ax-pre-ltadd 7978 ax-pre-mulgt0 7979 ax-pre-mulext 7980 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4322 df-po 4325 df-iso 4326 df-xp 4661 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-iota 5207 df-fun 5248 df-fv 5254 df-riota 5865 df-ov 5913 df-oprab 5914 df-mpo 5915 df-pnf 8046 df-mnf 8047 df-xr 8048 df-ltxr 8049 df-le 8050 df-sub 8182 df-neg 8183 df-reap 8584 df-ap 8591 df-div 8682 |
This theorem is referenced by: lt2mul2div 8888 lemuldiv 8890 ledivdiv 8899 ltdiv23 8901 lediv23 8902 recp1lt1 8908 ledivp1 8912 div4p1lem1div2 9226 divelunit 10058 fldiv4p1lem1div2 10364 flqdiv 10382 expnbnd 10724 resqrexlemover 11144 resqrexlemcalc2 11149 reeff1oleme 14855 rplogbval 15025 rplogbcl 15026 gausslemma2dlem3 15127 2lgsoddprmlem2 15139 |
Copyright terms: Public domain | W3C validator |