ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  redivclapd Unicode version

Theorem redivclapd 8859
Description: Closure law for division of reals. (Contributed by Jim Kingdon, 29-Feb-2020.)
Hypotheses
Ref Expression
redivclapd.1  |-  ( ph  ->  A  e.  RR )
redivclapd.2  |-  ( ph  ->  B  e.  RR )
redivclapd.3  |-  ( ph  ->  B #  0 )
Assertion
Ref Expression
redivclapd  |-  ( ph  ->  ( A  /  B
)  e.  RR )

Proof of Theorem redivclapd
StepHypRef Expression
1 redivclapd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 redivclapd.2 . 2  |-  ( ph  ->  B  e.  RR )
3 redivclapd.3 . 2  |-  ( ph  ->  B #  0 )
4 redivclap 8755 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B #  0 )  ->  ( A  /  B )  e.  RR )
51, 2, 3, 4syl3anc 1249 1  |-  ( ph  ->  ( A  /  B
)  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   RRcr 7876   0cc0 7877   # cap 8605    / cdiv 8696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697
This theorem is referenced by:  lt2mul2div  8903  lemuldiv  8905  ledivdiv  8914  ltdiv23  8916  lediv23  8917  recp1lt1  8923  ledivp1  8927  div4p1lem1div2  9242  divelunit  10074  fldiv4p1lem1div2  10380  flqdiv  10398  expnbnd  10740  resqrexlemover  11160  resqrexlemcalc2  11165  reeff1oleme  14981  rplogbval  15153  rplogbcl  15154  gausslemma2dlem3  15271  2lgsoddprmlem2  15314
  Copyright terms: Public domain W3C validator