ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divassapd Unicode version

Theorem divassapd 8786
Description: An associative law for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
Hypotheses
Ref Expression
divcld.1  |-  ( ph  ->  A  e.  CC )
divcld.2  |-  ( ph  ->  B  e.  CC )
divmuld.3  |-  ( ph  ->  C  e.  CC )
divassapd.4  |-  ( ph  ->  C #  0 )
Assertion
Ref Expression
divassapd  |-  ( ph  ->  ( ( A  x.  B )  /  C
)  =  ( A  x.  ( B  /  C ) ) )

Proof of Theorem divassapd
StepHypRef Expression
1 divcld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 divcld.2 . 2  |-  ( ph  ->  B  e.  CC )
3 divmuld.3 . 2  |-  ( ph  ->  C  e.  CC )
4 divassapd.4 . 2  |-  ( ph  ->  C #  0 )
5 divassap 8650 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  x.  B )  /  C
)  =  ( A  x.  ( B  /  C ) ) )
61, 2, 3, 4, 5syl112anc 1242 1  |-  ( ph  ->  ( ( A  x.  B )  /  C
)  =  ( A  x.  ( B  /  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   class class class wbr 4005  (class class class)co 5878   CCcc 7812   0cc0 7814    x. cmul 7819   # cap 8541    / cdiv 8632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633
This theorem is referenced by:  lt2mul2div  8839  zesq  10642  crre  10869  geoisum1c  11531  cvgratnnlemfm  11540  cvgratz  11543  mertenslemi1  11546  eftlub  11701  mulsucdiv2z  11893  lcmgcdlem  12080  cncongr2  12107  pcaddlem  12341  pockthlem  12357  mul4sqlem  12394  dvrecap  14317  tangtx  14399  rplogbreexp  14511
  Copyright terms: Public domain W3C validator