ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divassapd Unicode version

Theorem divassapd 8756
Description: An associative law for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
Hypotheses
Ref Expression
divcld.1  |-  ( ph  ->  A  e.  CC )
divcld.2  |-  ( ph  ->  B  e.  CC )
divmuld.3  |-  ( ph  ->  C  e.  CC )
divassapd.4  |-  ( ph  ->  C #  0 )
Assertion
Ref Expression
divassapd  |-  ( ph  ->  ( ( A  x.  B )  /  C
)  =  ( A  x.  ( B  /  C ) ) )

Proof of Theorem divassapd
StepHypRef Expression
1 divcld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 divcld.2 . 2  |-  ( ph  ->  B  e.  CC )
3 divmuld.3 . 2  |-  ( ph  ->  C  e.  CC )
4 divassapd.4 . 2  |-  ( ph  ->  C #  0 )
5 divassap 8620 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  x.  B )  /  C
)  =  ( A  x.  ( B  /  C ) ) )
61, 2, 3, 4, 5syl112anc 1242 1  |-  ( ph  ->  ( ( A  x.  B )  /  C
)  =  ( A  x.  ( B  /  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146   class class class wbr 3998  (class class class)co 5865   CCcc 7784   0cc0 7786    x. cmul 7791   # cap 8512    / cdiv 8602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-po 4290  df-iso 4291  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603
This theorem is referenced by:  lt2mul2div  8809  zesq  10608  crre  10834  geoisum1c  11496  cvgratnnlemfm  11505  cvgratz  11508  mertenslemi1  11511  eftlub  11666  mulsucdiv2z  11857  lcmgcdlem  12044  cncongr2  12071  pcaddlem  12305  pockthlem  12321  mul4sqlem  12358  dvrecap  13748  tangtx  13830  rplogbreexp  13942
  Copyright terms: Public domain W3C validator