![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gt0ap0d | Unicode version |
Description: Positive implies apart
from zero. Because of the way we define
#, ![]() ![]() ![]() |
Ref | Expression |
---|---|
gt0ap0d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
gt0ap0d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
gt0ap0d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gt0ap0d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | gt0ap0d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | gt0ap0 8585 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-ltxr 7999 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 |
This theorem is referenced by: prodgt0gt0 8810 prodgt0 8811 ltdiv1 8827 ltmuldiv 8833 ledivmul 8836 lt2mul2div 8838 lemuldiv 8840 ltrec 8842 lerec 8843 ltrec1 8847 lerec2 8848 ledivdiv 8849 lediv2 8850 ltdiv23 8851 lediv23 8852 lediv12a 8853 recp1lt1 8858 ledivp1 8862 nnap0 8950 rpap0 9672 modq0 10331 mulqmod0 10332 negqmod0 10333 modqlt 10335 modqdiffl 10337 modqid0 10352 modqcyc 10361 modqmuladdnn0 10370 q2txmodxeq0 10386 modqdi 10394 ltexp2a 10574 leexp2a 10575 expnbnd 10646 expcanlem 10697 expcan 10698 resqrexlemover 11021 resqrexlemcalc1 11025 resqrexlemcalc2 11026 ltabs 11098 divcnv 11507 expcnvre 11513 georeclim 11523 geoisumr 11528 cvgratnnlembern 11533 cvgratnnlemfm 11539 cvgratz 11542 cnopnap 14179 reeff1oleme 14278 tangtx 14344 trirec0 14877 ltlenmkv 14903 |
Copyright terms: Public domain | W3C validator |