![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > gt0ap0d | Unicode version |
Description: Positive implies apart
from zero. Because of the way we define
#, ![]() ![]() ![]() |
Ref | Expression |
---|---|
gt0ap0d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
gt0ap0d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
gt0ap0d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gt0ap0d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | gt0ap0d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | gt0ap0 8645 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 |
This theorem is referenced by: prodgt0gt0 8870 prodgt0 8871 ltdiv1 8887 ltmuldiv 8893 ledivmul 8896 lt2mul2div 8898 lemuldiv 8900 ltrec 8902 lerec 8903 ltrec1 8907 lerec2 8908 ledivdiv 8909 lediv2 8910 ltdiv23 8911 lediv23 8912 lediv12a 8913 recp1lt1 8918 ledivp1 8922 nnap0 9011 rpap0 9736 modq0 10400 mulqmod0 10401 negqmod0 10402 modqlt 10404 modqdiffl 10406 modqid0 10421 modqcyc 10430 modqmuladdnn0 10439 q2txmodxeq0 10455 modqdi 10463 ltexp2a 10662 leexp2a 10663 expnbnd 10734 expcanlem 10786 expcan 10787 resqrexlemover 11154 resqrexlemcalc1 11158 resqrexlemcalc2 11159 ltabs 11231 divcnv 11640 expcnvre 11646 georeclim 11656 geoisumr 11661 cvgratnnlembern 11666 cvgratnnlemfm 11672 cvgratz 11675 cnopnap 14765 reeff1oleme 14907 tangtx 14973 lgsquadlem1 15191 trirec0 15534 ltlenmkv 15560 |
Copyright terms: Public domain | W3C validator |