| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gt0ap0d | Unicode version | ||
| Description: Positive implies apart
from zero. Because of the way we define
#, |
| Ref | Expression |
|---|---|
| gt0ap0d.1 |
|
| gt0ap0d.2 |
|
| Ref | Expression |
|---|---|
| gt0ap0d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ap0d.1 |
. 2
| |
| 2 | gt0ap0d.2 |
. 2
| |
| 3 | gt0ap0 8701 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-ltxr 8114 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 |
| This theorem is referenced by: prodgt0gt0 8926 prodgt0 8927 ltdiv1 8943 ltmuldiv 8949 ledivmul 8952 lt2mul2div 8954 lemuldiv 8956 ltrec 8958 lerec 8959 ltrec1 8963 lerec2 8964 ledivdiv 8965 lediv2 8966 ltdiv23 8967 lediv23 8968 lediv12a 8969 recp1lt1 8974 ledivp1 8978 nnap0 9067 rpap0 9794 modq0 10476 mulqmod0 10477 negqmod0 10478 modqlt 10480 modqdiffl 10482 modqid0 10497 modqcyc 10506 modqmuladdnn0 10515 q2txmodxeq0 10531 modqdi 10539 ltexp2a 10738 leexp2a 10739 expnbnd 10810 expcanlem 10862 expcan 10863 resqrexlemover 11354 resqrexlemcalc1 11358 resqrexlemcalc2 11359 ltabs 11431 divcnv 11841 expcnvre 11847 georeclim 11857 geoisumr 11862 cvgratnnlembern 11867 cvgratnnlemfm 11873 cvgratz 11876 cnopnap 15116 reeff1oleme 15277 tangtx 15343 mersenne 15502 perfectlem2 15505 lgsquadlem1 15587 lgsquadlem2 15588 trirec0 16020 ltlenmkv 16046 |
| Copyright terms: Public domain | W3C validator |