| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gt0ap0d | Unicode version | ||
| Description: Positive implies apart
from zero. Because of the way we define
#, |
| Ref | Expression |
|---|---|
| gt0ap0d.1 |
|
| gt0ap0d.2 |
|
| Ref | Expression |
|---|---|
| gt0ap0d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ap0d.1 |
. 2
| |
| 2 | gt0ap0d.2 |
. 2
| |
| 3 | gt0ap0 8773 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 |
| This theorem is referenced by: prodgt0gt0 8998 prodgt0 8999 ltdiv1 9015 ltmuldiv 9021 ledivmul 9024 lt2mul2div 9026 lemuldiv 9028 ltrec 9030 lerec 9031 ltrec1 9035 lerec2 9036 ledivdiv 9037 lediv2 9038 ltdiv23 9039 lediv23 9040 lediv12a 9041 recp1lt1 9046 ledivp1 9050 nnap0 9139 rpap0 9866 modq0 10551 mulqmod0 10552 negqmod0 10553 modqlt 10555 modqdiffl 10557 modqid0 10572 modqcyc 10581 modqmuladdnn0 10590 q2txmodxeq0 10606 modqdi 10614 ltexp2a 10813 leexp2a 10814 expnbnd 10885 expcanlem 10937 expcan 10938 resqrexlemover 11521 resqrexlemcalc1 11525 resqrexlemcalc2 11526 ltabs 11598 divcnv 12008 expcnvre 12014 georeclim 12024 geoisumr 12029 cvgratnnlembern 12034 cvgratnnlemfm 12040 cvgratz 12043 cnopnap 15285 reeff1oleme 15446 tangtx 15512 mersenne 15671 perfectlem2 15674 lgsquadlem1 15756 lgsquadlem2 15757 trirec0 16412 ltlenmkv 16438 |
| Copyright terms: Public domain | W3C validator |