ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0ap0d Unicode version

Theorem gt0ap0d 8588
Description: Positive implies apart from zero. Because of the way we define #,  A must be an element of  RR, not just  RR*. (Contributed by Jim Kingdon, 27-Feb-2020.)
Hypotheses
Ref Expression
gt0ap0d.1  |-  ( ph  ->  A  e.  RR )
gt0ap0d.2  |-  ( ph  ->  0  <  A )
Assertion
Ref Expression
gt0ap0d  |-  ( ph  ->  A #  0 )

Proof of Theorem gt0ap0d
StepHypRef Expression
1 gt0ap0d.1 . 2  |-  ( ph  ->  A  e.  RR )
2 gt0ap0d.2 . 2  |-  ( ph  ->  0  <  A )
3 gt0ap0 8585 . 2  |-  ( ( A  e.  RR  /\  0  <  A )  ->  A #  0 )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  A #  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   class class class wbr 4005   RRcr 7812   0cc0 7813    < clt 7994   # cap 8540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541
This theorem is referenced by:  prodgt0gt0  8810  prodgt0  8811  ltdiv1  8827  ltmuldiv  8833  ledivmul  8836  lt2mul2div  8838  lemuldiv  8840  ltrec  8842  lerec  8843  ltrec1  8847  lerec2  8848  ledivdiv  8849  lediv2  8850  ltdiv23  8851  lediv23  8852  lediv12a  8853  recp1lt1  8858  ledivp1  8862  nnap0  8950  rpap0  9672  modq0  10331  mulqmod0  10332  negqmod0  10333  modqlt  10335  modqdiffl  10337  modqid0  10352  modqcyc  10361  modqmuladdnn0  10370  q2txmodxeq0  10386  modqdi  10394  ltexp2a  10574  leexp2a  10575  expnbnd  10646  expcanlem  10697  expcan  10698  resqrexlemover  11021  resqrexlemcalc1  11025  resqrexlemcalc2  11026  ltabs  11098  divcnv  11507  expcnvre  11513  georeclim  11523  geoisumr  11528  cvgratnnlembern  11533  cvgratnnlemfm  11539  cvgratz  11542  cnopnap  14179  reeff1oleme  14278  tangtx  14344  trirec0  14877  ltlenmkv  14903
  Copyright terms: Public domain W3C validator