| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gt0ap0d | Unicode version | ||
| Description: Positive implies apart
from zero. Because of the way we define
#, |
| Ref | Expression |
|---|---|
| gt0ap0d.1 |
|
| gt0ap0d.2 |
|
| Ref | Expression |
|---|---|
| gt0ap0d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ap0d.1 |
. 2
| |
| 2 | gt0ap0d.2 |
. 2
| |
| 3 | gt0ap0 8734 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 |
| This theorem is referenced by: prodgt0gt0 8959 prodgt0 8960 ltdiv1 8976 ltmuldiv 8982 ledivmul 8985 lt2mul2div 8987 lemuldiv 8989 ltrec 8991 lerec 8992 ltrec1 8996 lerec2 8997 ledivdiv 8998 lediv2 8999 ltdiv23 9000 lediv23 9001 lediv12a 9002 recp1lt1 9007 ledivp1 9011 nnap0 9100 rpap0 9827 modq0 10511 mulqmod0 10512 negqmod0 10513 modqlt 10515 modqdiffl 10517 modqid0 10532 modqcyc 10541 modqmuladdnn0 10550 q2txmodxeq0 10566 modqdi 10574 ltexp2a 10773 leexp2a 10774 expnbnd 10845 expcanlem 10897 expcan 10898 resqrexlemover 11436 resqrexlemcalc1 11440 resqrexlemcalc2 11441 ltabs 11513 divcnv 11923 expcnvre 11929 georeclim 11939 geoisumr 11944 cvgratnnlembern 11949 cvgratnnlemfm 11955 cvgratz 11958 cnopnap 15198 reeff1oleme 15359 tangtx 15425 mersenne 15584 perfectlem2 15587 lgsquadlem1 15669 lgsquadlem2 15670 trirec0 16185 ltlenmkv 16211 |
| Copyright terms: Public domain | W3C validator |