| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > gt0ap0d | Unicode version | ||
| Description: Positive implies apart
from zero.  Because of the way we define
       #,  | 
| Ref | Expression | 
|---|---|
| gt0ap0d.1 | 
 | 
| gt0ap0d.2 | 
 | 
| Ref | Expression | 
|---|---|
| gt0ap0d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | gt0ap0d.1 | 
. 2
 | |
| 2 | gt0ap0d.2 | 
. 2
 | |
| 3 | gt0ap0 8653 | 
. 2
 | |
| 4 | 1, 2, 3 | syl2anc 411 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 | 
| This theorem is referenced by: prodgt0gt0 8878 prodgt0 8879 ltdiv1 8895 ltmuldiv 8901 ledivmul 8904 lt2mul2div 8906 lemuldiv 8908 ltrec 8910 lerec 8911 ltrec1 8915 lerec2 8916 ledivdiv 8917 lediv2 8918 ltdiv23 8919 lediv23 8920 lediv12a 8921 recp1lt1 8926 ledivp1 8930 nnap0 9019 rpap0 9745 modq0 10421 mulqmod0 10422 negqmod0 10423 modqlt 10425 modqdiffl 10427 modqid0 10442 modqcyc 10451 modqmuladdnn0 10460 q2txmodxeq0 10476 modqdi 10484 ltexp2a 10683 leexp2a 10684 expnbnd 10755 expcanlem 10807 expcan 10808 resqrexlemover 11175 resqrexlemcalc1 11179 resqrexlemcalc2 11180 ltabs 11252 divcnv 11662 expcnvre 11668 georeclim 11678 geoisumr 11683 cvgratnnlembern 11688 cvgratnnlemfm 11694 cvgratz 11697 cnopnap 14847 reeff1oleme 15008 tangtx 15074 mersenne 15233 perfectlem2 15236 lgsquadlem1 15318 lgsquadlem2 15319 trirec0 15688 ltlenmkv 15714 | 
| Copyright terms: Public domain | W3C validator |