ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemrnd Unicode version

Theorem ltexprlemrnd 7700
Description: Our constructed difference is rounded. Lemma for ltexpri 7708. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemrnd  |-  ( A 
<P  B  ->  ( A. q  e.  Q.  (
q  e.  ( 1st `  C )  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  ( 1st `  C ) ) )  /\  A. r  e.  Q.  (
r  e.  ( 2nd `  C )  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) ) ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemrnd
StepHypRef Expression
1 ltexprlem.1 . . . . . 6  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
21ltexprlemopl 7696 . . . . 5  |-  ( ( A  <P  B  /\  q  e.  Q.  /\  q  e.  ( 1st `  C
) )  ->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  ( 1st `  C ) ) )
323expia 1207 . . . 4  |-  ( ( A  <P  B  /\  q  e.  Q. )  ->  ( q  e.  ( 1st `  C )  ->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) ) )
41ltexprlemlol 7697 . . . 4  |-  ( ( A  <P  B  /\  q  e.  Q. )  ->  ( E. r  e. 
Q.  ( q  <Q 
r  /\  r  e.  ( 1st `  C ) )  ->  q  e.  ( 1st `  C ) ) )
53, 4impbid 129 . . 3  |-  ( ( A  <P  B  /\  q  e.  Q. )  ->  ( q  e.  ( 1st `  C )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) ) )
65ralrimiva 2578 . 2  |-  ( A 
<P  B  ->  A. q  e.  Q.  ( q  e.  ( 1st `  C
)  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) ) )
71ltexprlemopu 7698 . . . . 5  |-  ( ( A  <P  B  /\  r  e.  Q.  /\  r  e.  ( 2nd `  C
) )  ->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) ) )
873expia 1207 . . . 4  |-  ( ( A  <P  B  /\  r  e.  Q. )  ->  ( r  e.  ( 2nd `  C )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) ) )
91ltexprlemupu 7699 . . . 4  |-  ( ( A  <P  B  /\  r  e.  Q. )  ->  ( E. q  e. 
Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) )  ->  r  e.  ( 2nd `  C ) ) )
108, 9impbid 129 . . 3  |-  ( ( A  <P  B  /\  r  e.  Q. )  ->  ( r  e.  ( 2nd `  C )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) ) )
1110ralrimiva 2578 . 2  |-  ( A 
<P  B  ->  A. r  e.  Q.  ( r  e.  ( 2nd `  C
)  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) ) )
126, 11jca 306 1  |-  ( A 
<P  B  ->  ( A. q  e.  Q.  (
q  e.  ( 1st `  C )  <->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  ( 1st `  C ) ) )  /\  A. r  e.  Q.  (
r  e.  ( 2nd `  C )  <->  E. q  e.  Q.  ( q  <Q 
r  /\  q  e.  ( 2nd `  C ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372   E.wex 1514    e. wcel 2175   A.wral 2483   E.wrex 2484   {crab 2487   <.cop 3635   class class class wbr 4043   ` cfv 5268  (class class class)co 5934   1stc1st 6214   2ndc2nd 6215   Q.cnq 7375    +Q cplq 7377    <Q cltq 7380    <P cltp 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-mqqs 7445  df-1nqqs 7446  df-ltnqqs 7448  df-inp 7561  df-iltp 7565
This theorem is referenced by:  ltexprlempr  7703
  Copyright terms: Public domain W3C validator