![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltexprlemrnd | GIF version |
Description: Our constructed difference is rounded. Lemma for ltexpri 7641. (Contributed by Jim Kingdon, 17-Dec-2019.) |
Ref | Expression |
---|---|
ltexprlem.1 | ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 |
Ref | Expression |
---|---|
ltexprlemrnd | ⊢ (𝐴<P 𝐵 → (∀𝑞 ∈ Q (𝑞 ∈ (1st ‘𝐶) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐶) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltexprlem.1 | . . . . . 6 ⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st ‘𝐵))}, {𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd ‘𝐵))}〉 | |
2 | 1 | ltexprlemopl 7629 | . . . . 5 ⊢ ((𝐴<P 𝐵 ∧ 𝑞 ∈ Q ∧ 𝑞 ∈ (1st ‘𝐶)) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶))) |
3 | 2 | 3expia 1207 | . . . 4 ⊢ ((𝐴<P 𝐵 ∧ 𝑞 ∈ Q) → (𝑞 ∈ (1st ‘𝐶) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶)))) |
4 | 1 | ltexprlemlol 7630 | . . . 4 ⊢ ((𝐴<P 𝐵 ∧ 𝑞 ∈ Q) → (∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶)) → 𝑞 ∈ (1st ‘𝐶))) |
5 | 3, 4 | impbid 129 | . . 3 ⊢ ((𝐴<P 𝐵 ∧ 𝑞 ∈ Q) → (𝑞 ∈ (1st ‘𝐶) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶)))) |
6 | 5 | ralrimiva 2563 | . 2 ⊢ (𝐴<P 𝐵 → ∀𝑞 ∈ Q (𝑞 ∈ (1st ‘𝐶) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶)))) |
7 | 1 | ltexprlemopu 7631 | . . . . 5 ⊢ ((𝐴<P 𝐵 ∧ 𝑟 ∈ Q ∧ 𝑟 ∈ (2nd ‘𝐶)) → ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶))) |
8 | 7 | 3expia 1207 | . . . 4 ⊢ ((𝐴<P 𝐵 ∧ 𝑟 ∈ Q) → (𝑟 ∈ (2nd ‘𝐶) → ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶)))) |
9 | 1 | ltexprlemupu 7632 | . . . 4 ⊢ ((𝐴<P 𝐵 ∧ 𝑟 ∈ Q) → (∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶)) → 𝑟 ∈ (2nd ‘𝐶))) |
10 | 8, 9 | impbid 129 | . . 3 ⊢ ((𝐴<P 𝐵 ∧ 𝑟 ∈ Q) → (𝑟 ∈ (2nd ‘𝐶) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶)))) |
11 | 10 | ralrimiva 2563 | . 2 ⊢ (𝐴<P 𝐵 → ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐶) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶)))) |
12 | 6, 11 | jca 306 | 1 ⊢ (𝐴<P 𝐵 → (∀𝑞 ∈ Q (𝑞 ∈ (1st ‘𝐶) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘𝐶))) ∧ ∀𝑟 ∈ Q (𝑟 ∈ (2nd ‘𝐶) ↔ ∃𝑞 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑞 ∈ (2nd ‘𝐶))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2160 ∀wral 2468 ∃wrex 2469 {crab 2472 〈cop 3610 class class class wbr 4018 ‘cfv 5235 (class class class)co 5895 1st c1st 6162 2nd c2nd 6163 Qcnq 7308 +Q cplq 7310 <Q cltq 7313 <P cltp 7323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-eprel 4307 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5898 df-oprab 5899 df-mpo 5900 df-1st 6164 df-2nd 6165 df-recs 6329 df-irdg 6394 df-1o 6440 df-oadd 6444 df-omul 6445 df-er 6558 df-ec 6560 df-qs 6564 df-ni 7332 df-pli 7333 df-mi 7334 df-lti 7335 df-plpq 7372 df-mpq 7373 df-enq 7375 df-nqqs 7376 df-plqqs 7377 df-mqqs 7378 df-1nqqs 7379 df-ltnqqs 7381 df-inp 7494 df-iltp 7498 |
This theorem is referenced by: ltexprlempr 7636 |
Copyright terms: Public domain | W3C validator |