ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrennb Unicode version

Theorem ltrennb 7916
Description: Ordering of natural numbers with  <N or  <RR. (Contributed by Jim Kingdon, 13-Jul-2021.)
Assertion
Ref Expression
ltrennb  |-  ( ( J  e.  N.  /\  K  e.  N. )  ->  ( J  <N  K  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
Distinct variable groups:    J, l    u, J    K, l    u, K

Proof of Theorem ltrennb
StepHypRef Expression
1 ltnnnq 7485 . . 3  |-  ( ( J  e.  N.  /\  K  e.  N. )  ->  ( J  <N  K  <->  [ <. J ,  1o >. ]  ~Q  <Q  [
<. K ,  1o >. ]  ~Q  ) )
2 nnnq 7484 . . . . 5  |-  ( J  e.  N.  ->  [ <. J ,  1o >. ]  ~Q  e.  Q. )
32adantr 276 . . . 4  |-  ( ( J  e.  N.  /\  K  e.  N. )  ->  [ <. J ,  1o >. ]  ~Q  e.  Q. )
4 nnnq 7484 . . . . 5  |-  ( K  e.  N.  ->  [ <. K ,  1o >. ]  ~Q  e.  Q. )
54adantl 277 . . . 4  |-  ( ( J  e.  N.  /\  K  e.  N. )  ->  [ <. K ,  1o >. ]  ~Q  e.  Q. )
6 ltnqpr 7655 . . . 4  |-  ( ( [ <. J ,  1o >. ]  ~Q  e.  Q.  /\ 
[ <. K ,  1o >. ]  ~Q  e.  Q. )  ->  ( [ <. J ,  1o >. ]  ~Q  <Q  [ <. K ,  1o >. ]  ~Q  <->  <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  <P  <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >. ) )
73, 5, 6syl2anc 411 . . 3  |-  ( ( J  e.  N.  /\  K  e.  N. )  ->  ( [ <. J ,  1o >. ]  ~Q  <Q  [
<. K ,  1o >. ]  ~Q  <->  <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  <P  <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >. ) )
8 nqprlu 7609 . . . . 5  |-  ( [
<. J ,  1o >. ]  ~Q  e.  Q.  ->  <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
93, 8syl 14 . . . 4  |-  ( ( J  e.  N.  /\  K  e.  N. )  -> 
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
10 nqprlu 7609 . . . . 5  |-  ( [
<. K ,  1o >. ]  ~Q  e.  Q.  ->  <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
115, 10syl 14 . . . 4  |-  ( ( J  e.  N.  /\  K  e.  N. )  -> 
<. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )
12 prsrlt 7849 . . . 4  |-  ( (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  e.  P.  /\  <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  e.  P. )  -> 
( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  <P  <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  <->  [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
139, 11, 12syl2anc 411 . . 3  |-  ( ( J  e.  N.  /\  K  e.  N. )  ->  ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  <P  <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  <->  [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
141, 7, 133bitrd 214 . 2  |-  ( ( J  e.  N.  /\  K  e.  N. )  ->  ( J  <N  K  <->  [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
)
15 ltresr 7901 . 2  |-  ( <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. 
<->  [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  <R  [
<. ( <. { l  |  l  <Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
1614, 15bitr4di 198 1  |-  ( ( J  e.  N.  /\  K  e.  N. )  ->  ( J  <N  K  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. K ,  1o >. ]  ~Q  } ,  { u  |  [ <. K ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   {cab 2179   <.cop 3622   class class class wbr 4030  (class class class)co 5919   1oc1o 6464   [cec 6587   N.cnpi 7334    <N clti 7337    ~Q ceq 7341   Q.cnq 7342    <Q cltq 7347   P.cnp 7353   1Pc1p 7354    +P. cpp 7355    <P cltp 7357    ~R cer 7358   0Rc0r 7360    <R cltr 7365    <RR cltrr 7878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-iplp 7530  df-iltp 7532  df-enr 7788  df-nr 7789  df-ltr 7792  df-0r 7793  df-r 7884  df-lt 7887
This theorem is referenced by:  ltrenn  7917  axcaucvglemres  7961
  Copyright terms: Public domain W3C validator