ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pncan3d Unicode version

Theorem pncan3d 8343
Description: Subtraction and addition of equals. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
pncan3d  |-  ( ph  ->  ( A  +  ( B  -  A ) )  =  B )

Proof of Theorem pncan3d
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 pncand.2 . 2  |-  ( ph  ->  B  e.  CC )
3 pncan3 8237 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  ( B  -  A ) )  =  B )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( A  +  ( B  -  A ) )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167  (class class class)co 5923   CCcc 7880    + caddc 7885    - cmin 8200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-resscn 7974  ax-1cn 7975  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-addcom 7982  ax-addass 7984  ax-distr 7986  ax-i2m1 7987  ax-0id 7990  ax-rnegex 7991  ax-cnre 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-sub 8202
This theorem is referenced by:  peano5uzti  9437  exbtwnzlemex  10342  rebtwn2z  10347  intqfrac2  10414  intqfrac  10434  recvguniqlem  11162  resqrexlemoverl  11189  mertenslemi1  11703  efltim  11866  efival  11900  bitsmod  12124  bitsinv1lem  12129  pw2dvdseulemle  12346  odzdvds  12425  modprm0  12434  pcaddlem  12519  ivthinclemlopn  14898  plymullem1  15010  perfectlem2  15262  lgseisenlem4  15340  lgsquadlem1  15344  apdifflemr  15720
  Copyright terms: Public domain W3C validator