| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rebtwn2z | Unicode version | ||
| Description: A real number can be
bounded by integers above and below which are two
apart.
The proof starts by finding two integers which are less than and greater than the given real number. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on weak linearity, and iterating until the range consists of integers which are two apart. (Contributed by Jim Kingdon, 13-Oct-2021.) |
| Ref | Expression |
|---|---|
| rebtwn2z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | btwnz 9462 |
. . 3
| |
| 2 | reeanv 2667 |
. . 3
| |
| 3 | 1, 2 | sylibr 134 |
. 2
|
| 4 | simpll 527 |
. . . . 5
| |
| 5 | simplrl 535 |
. . . . . . . . 9
| |
| 6 | 5 | zred 9465 |
. . . . . . . 8
|
| 7 | simplrr 536 |
. . . . . . . . 9
| |
| 8 | 7 | zred 9465 |
. . . . . . . 8
|
| 9 | simprl 529 |
. . . . . . . 8
| |
| 10 | simprr 531 |
. . . . . . . 8
| |
| 11 | 6, 4, 8, 9, 10 | lttrd 8169 |
. . . . . . 7
|
| 12 | znnsub 9394 |
. . . . . . . 8
| |
| 13 | 12 | ad2antlr 489 |
. . . . . . 7
|
| 14 | 11, 13 | mpbid 147 |
. . . . . 6
|
| 15 | elnnuz 9655 |
. . . . . . . 8
| |
| 16 | eluzp1p1 9644 |
. . . . . . . 8
| |
| 17 | 15, 16 | sylbi 121 |
. . . . . . 7
|
| 18 | df-2 9066 |
. . . . . . . 8
| |
| 19 | 18 | fveq2i 5564 |
. . . . . . 7
|
| 20 | 17, 19 | eleqtrrdi 2290 |
. . . . . 6
|
| 21 | 14, 20 | syl 14 |
. . . . 5
|
| 22 | 5 | zcnd 9466 |
. . . . . . . . 9
|
| 23 | 7 | zcnd 9466 |
. . . . . . . . 9
|
| 24 | 22, 23 | pncan3d 8357 |
. . . . . . . 8
|
| 25 | 24, 8 | eqeltrd 2273 |
. . . . . . 7
|
| 26 | 8, 6 | resubcld 8424 |
. . . . . . . . 9
|
| 27 | 1red 8058 |
. . . . . . . . 9
| |
| 28 | 26, 27 | readdcld 8073 |
. . . . . . . 8
|
| 29 | 6, 28 | readdcld 8073 |
. . . . . . 7
|
| 30 | 10, 24 | breqtrrd 4062 |
. . . . . . 7
|
| 31 | 26 | ltp1d 8974 |
. . . . . . . 8
|
| 32 | 26, 28, 6, 31 | ltadd2dd 8466 |
. . . . . . 7
|
| 33 | 4, 25, 29, 30, 32 | lttrd 8169 |
. . . . . 6
|
| 34 | breq1 4037 |
. . . . . . . 8
| |
| 35 | oveq1 5932 |
. . . . . . . . 9
| |
| 36 | 35 | breq2d 4046 |
. . . . . . . 8
|
| 37 | 34, 36 | anbi12d 473 |
. . . . . . 7
|
| 38 | 37 | rspcev 2868 |
. . . . . 6
|
| 39 | 5, 9, 33, 38 | syl12anc 1247 |
. . . . 5
|
| 40 | rebtwn2zlemshrink 10360 |
. . . . 5
| |
| 41 | 4, 21, 39, 40 | syl3anc 1249 |
. . . 4
|
| 42 | 41 | ex 115 |
. . 3
|
| 43 | 42 | rexlimdvva 2622 |
. 2
|
| 44 | 3, 43 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 ax-arch 8015 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-n0 9267 df-z 9344 df-uz 9619 |
| This theorem is referenced by: qbtwnre 10363 |
| Copyright terms: Public domain | W3C validator |