| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rebtwn2z | Unicode version | ||
| Description: A real number can be
bounded by integers above and below which are two
apart.
The proof starts by finding two integers which are less than and greater than the given real number. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on weak linearity, and iterating until the range consists of integers which are two apart. (Contributed by Jim Kingdon, 13-Oct-2021.) |
| Ref | Expression |
|---|---|
| rebtwn2z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | btwnz 9494 |
. . 3
| |
| 2 | reeanv 2676 |
. . 3
| |
| 3 | 1, 2 | sylibr 134 |
. 2
|
| 4 | simpll 527 |
. . . . 5
| |
| 5 | simplrl 535 |
. . . . . . . . 9
| |
| 6 | 5 | zred 9497 |
. . . . . . . 8
|
| 7 | simplrr 536 |
. . . . . . . . 9
| |
| 8 | 7 | zred 9497 |
. . . . . . . 8
|
| 9 | simprl 529 |
. . . . . . . 8
| |
| 10 | simprr 531 |
. . . . . . . 8
| |
| 11 | 6, 4, 8, 9, 10 | lttrd 8200 |
. . . . . . 7
|
| 12 | znnsub 9426 |
. . . . . . . 8
| |
| 13 | 12 | ad2antlr 489 |
. . . . . . 7
|
| 14 | 11, 13 | mpbid 147 |
. . . . . 6
|
| 15 | elnnuz 9687 |
. . . . . . . 8
| |
| 16 | eluzp1p1 9676 |
. . . . . . . 8
| |
| 17 | 15, 16 | sylbi 121 |
. . . . . . 7
|
| 18 | df-2 9097 |
. . . . . . . 8
| |
| 19 | 18 | fveq2i 5581 |
. . . . . . 7
|
| 20 | 17, 19 | eleqtrrdi 2299 |
. . . . . 6
|
| 21 | 14, 20 | syl 14 |
. . . . 5
|
| 22 | 5 | zcnd 9498 |
. . . . . . . . 9
|
| 23 | 7 | zcnd 9498 |
. . . . . . . . 9
|
| 24 | 22, 23 | pncan3d 8388 |
. . . . . . . 8
|
| 25 | 24, 8 | eqeltrd 2282 |
. . . . . . 7
|
| 26 | 8, 6 | resubcld 8455 |
. . . . . . . . 9
|
| 27 | 1red 8089 |
. . . . . . . . 9
| |
| 28 | 26, 27 | readdcld 8104 |
. . . . . . . 8
|
| 29 | 6, 28 | readdcld 8104 |
. . . . . . 7
|
| 30 | 10, 24 | breqtrrd 4073 |
. . . . . . 7
|
| 31 | 26 | ltp1d 9005 |
. . . . . . . 8
|
| 32 | 26, 28, 6, 31 | ltadd2dd 8497 |
. . . . . . 7
|
| 33 | 4, 25, 29, 30, 32 | lttrd 8200 |
. . . . . 6
|
| 34 | breq1 4048 |
. . . . . . . 8
| |
| 35 | oveq1 5953 |
. . . . . . . . 9
| |
| 36 | 35 | breq2d 4057 |
. . . . . . . 8
|
| 37 | 34, 36 | anbi12d 473 |
. . . . . . 7
|
| 38 | 37 | rspcev 2877 |
. . . . . 6
|
| 39 | 5, 9, 33, 38 | syl12anc 1248 |
. . . . 5
|
| 40 | rebtwn2zlemshrink 10398 |
. . . . 5
| |
| 41 | 4, 21, 39, 40 | syl3anc 1250 |
. . . 4
|
| 42 | 41 | ex 115 |
. . 3
|
| 43 | 42 | rexlimdvva 2631 |
. 2
|
| 44 | 3, 43 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 ax-arch 8046 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-2 9097 df-n0 9298 df-z 9375 df-uz 9651 |
| This theorem is referenced by: qbtwnre 10401 |
| Copyright terms: Public domain | W3C validator |