Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > subdid | Unicode version |
Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulm1d.1 | |
mulnegd.2 | |
subdid.3 |
Ref | Expression |
---|---|
subdid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1d.1 | . 2 | |
2 | mulnegd.2 | . 2 | |
3 | subdid.3 | . 2 | |
4 | subdi 8239 | . 2 | |
5 | 1, 2, 3, 4 | syl3anc 1217 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1332 wcel 2125 (class class class)co 5814 cc 7709 cmul 7716 cmin 8025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-setind 4490 ax-resscn 7803 ax-1cn 7804 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-sub 8027 |
This theorem is referenced by: cru 8456 recextlem1 8504 cju 8811 zneo 9244 lincmb01cmp 9885 iccf1o 9886 intfracq 10197 modqlt 10210 modqdi 10269 modqsubdir 10270 subsq 10503 crre 10734 remullem 10748 mulcn2 11186 fsumparts 11344 geosergap 11380 mertensabs 11411 tanval3ap 11588 tanaddap 11613 eirraplem 11650 bezoutlemnewy 11851 cncongr1 11951 dvmulxxbr 13005 tangtx 13098 qdencn 13539 |
Copyright terms: Public domain | W3C validator |