Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > subdid | Unicode version |
Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulm1d.1 | |
mulnegd.2 | |
subdid.3 |
Ref | Expression |
---|---|
subdid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1d.1 | . 2 | |
2 | mulnegd.2 | . 2 | |
3 | subdid.3 | . 2 | |
4 | subdi 8304 | . 2 | |
5 | 1, 2, 3, 4 | syl3anc 1233 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 cmul 7779 cmin 8090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 |
This theorem is referenced by: cru 8521 recextlem1 8569 cju 8877 zneo 9313 lincmb01cmp 9960 iccf1o 9961 intfracq 10276 modqlt 10289 modqdi 10348 modqsubdir 10349 subsq 10582 crre 10821 remullem 10835 mulcn2 11275 fsumparts 11433 geosergap 11469 mertensabs 11500 tanval3ap 11677 tanaddap 11702 eirraplem 11739 bezoutlemnewy 11951 cncongr1 12057 eulerthlemh 12185 prmdiv 12189 prmdiveq 12190 4sqlem10 12339 mul4sqlem 12345 dvmulxxbr 13460 tangtx 13553 2sqlem4 13748 qdencn 14059 |
Copyright terms: Public domain | W3C validator |