ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subdid Unicode version

Theorem subdid 8516
Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulm1d.1  |-  ( ph  ->  A  e.  CC )
mulnegd.2  |-  ( ph  ->  B  e.  CC )
subdid.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
subdid  |-  ( ph  ->  ( A  x.  ( B  -  C )
)  =  ( ( A  x.  B )  -  ( A  x.  C ) ) )

Proof of Theorem subdid
StepHypRef Expression
1 mulm1d.1 . 2  |-  ( ph  ->  A  e.  CC )
2 mulnegd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 subdid.3 . 2  |-  ( ph  ->  C  e.  CC )
4 subdi 8487 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  -  C ) )  =  ( ( A  x.  B )  -  ( A  x.  C )
) )
51, 2, 3, 4syl3anc 1250 1  |-  ( ph  ->  ( A  x.  ( B  -  C )
)  =  ( ( A  x.  B )  -  ( A  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177  (class class class)co 5962   CCcc 7953    x. cmul 7960    - cmin 8273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-setind 4598  ax-resscn 8047  ax-1cn 8048  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-iota 5246  df-fun 5287  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-sub 8275
This theorem is referenced by:  muls1d  8520  cru  8705  recextlem1  8754  cju  9064  zneo  9504  lincmb01cmp  10155  iccf1o  10156  intfracq  10497  modqlt  10510  modqdi  10569  modqsubdir  10570  subsq  10823  crre  11253  remullem  11267  mulcn2  11708  fsumparts  11866  geosergap  11902  mertensabs  11933  tanval3ap  12110  tanaddap  12135  eirraplem  12173  bezoutlemnewy  12402  cncongr1  12510  eulerthlemh  12638  prmdiv  12642  prmdiveq  12643  4sqlem10  12795  mul4sqlem  12801  4sqlem17  12815  dvmulxxbr  15259  tangtx  15395  lgseisenlem2  15633  lgsquadlem1  15639  2sqlem4  15680  qdencn  16138
  Copyright terms: Public domain W3C validator