ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subdid Unicode version

Theorem subdid 8440
Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulm1d.1  |-  ( ph  ->  A  e.  CC )
mulnegd.2  |-  ( ph  ->  B  e.  CC )
subdid.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
subdid  |-  ( ph  ->  ( A  x.  ( B  -  C )
)  =  ( ( A  x.  B )  -  ( A  x.  C ) ) )

Proof of Theorem subdid
StepHypRef Expression
1 mulm1d.1 . 2  |-  ( ph  ->  A  e.  CC )
2 mulnegd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 subdid.3 . 2  |-  ( ph  ->  C  e.  CC )
4 subdi 8411 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  -  C ) )  =  ( ( A  x.  B )  -  ( A  x.  C )
) )
51, 2, 3, 4syl3anc 1249 1  |-  ( ph  ->  ( A  x.  ( B  -  C )
)  =  ( ( A  x.  B )  -  ( A  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167  (class class class)co 5922   CCcc 7877    x. cmul 7884    - cmin 8197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573  ax-resscn 7971  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sub 8199
This theorem is referenced by:  muls1d  8444  cru  8629  recextlem1  8678  cju  8988  zneo  9427  lincmb01cmp  10078  iccf1o  10079  intfracq  10412  modqlt  10425  modqdi  10484  modqsubdir  10485  subsq  10738  crre  11022  remullem  11036  mulcn2  11477  fsumparts  11635  geosergap  11671  mertensabs  11702  tanval3ap  11879  tanaddap  11904  eirraplem  11942  bezoutlemnewy  12163  cncongr1  12271  eulerthlemh  12399  prmdiv  12403  prmdiveq  12404  4sqlem10  12556  mul4sqlem  12562  4sqlem17  12576  dvmulxxbr  14938  tangtx  15074  lgseisenlem2  15312  lgsquadlem1  15318  2sqlem4  15359  qdencn  15671
  Copyright terms: Public domain W3C validator