| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subdid | Unicode version | ||
| Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mulm1d.1 |
|
| mulnegd.2 |
|
| subdid.3 |
|
| Ref | Expression |
|---|---|
| subdid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulm1d.1 |
. 2
| |
| 2 | mulnegd.2 |
. 2
| |
| 3 | subdid.3 |
. 2
| |
| 4 | subdi 8457 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-sub 8245 |
| This theorem is referenced by: muls1d 8490 cru 8675 recextlem1 8724 cju 9034 zneo 9474 lincmb01cmp 10125 iccf1o 10126 intfracq 10465 modqlt 10478 modqdi 10537 modqsubdir 10538 subsq 10791 crre 11168 remullem 11182 mulcn2 11623 fsumparts 11781 geosergap 11817 mertensabs 11848 tanval3ap 12025 tanaddap 12050 eirraplem 12088 bezoutlemnewy 12317 cncongr1 12425 eulerthlemh 12553 prmdiv 12557 prmdiveq 12558 4sqlem10 12710 mul4sqlem 12716 4sqlem17 12730 dvmulxxbr 15174 tangtx 15310 lgseisenlem2 15548 lgsquadlem1 15554 2sqlem4 15595 qdencn 15966 |
| Copyright terms: Public domain | W3C validator |