| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > subdid | Unicode version | ||
| Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| mulm1d.1 | 
 | 
| mulnegd.2 | 
 | 
| subdid.3 | 
 | 
| Ref | Expression | 
|---|---|
| subdid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mulm1d.1 | 
. 2
 | |
| 2 | mulnegd.2 | 
. 2
 | |
| 3 | subdid.3 | 
. 2
 | |
| 4 | subdi 8411 | 
. 2
 | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 | 
| This theorem is referenced by: muls1d 8444 cru 8629 recextlem1 8678 cju 8988 zneo 9427 lincmb01cmp 10078 iccf1o 10079 intfracq 10412 modqlt 10425 modqdi 10484 modqsubdir 10485 subsq 10738 crre 11022 remullem 11036 mulcn2 11477 fsumparts 11635 geosergap 11671 mertensabs 11702 tanval3ap 11879 tanaddap 11904 eirraplem 11942 bezoutlemnewy 12163 cncongr1 12271 eulerthlemh 12399 prmdiv 12403 prmdiveq 12404 4sqlem10 12556 mul4sqlem 12562 4sqlem17 12576 dvmulxxbr 14938 tangtx 15074 lgseisenlem2 15312 lgsquadlem1 15318 2sqlem4 15359 qdencn 15671 | 
| Copyright terms: Public domain | W3C validator |