ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subdid Unicode version

Theorem subdid 8435
Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulm1d.1  |-  ( ph  ->  A  e.  CC )
mulnegd.2  |-  ( ph  ->  B  e.  CC )
subdid.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
subdid  |-  ( ph  ->  ( A  x.  ( B  -  C )
)  =  ( ( A  x.  B )  -  ( A  x.  C ) ) )

Proof of Theorem subdid
StepHypRef Expression
1 mulm1d.1 . 2  |-  ( ph  ->  A  e.  CC )
2 mulnegd.2 . 2  |-  ( ph  ->  B  e.  CC )
3 subdid.3 . 2  |-  ( ph  ->  C  e.  CC )
4 subdi 8406 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  -  C ) )  =  ( ( A  x.  B )  -  ( A  x.  C )
) )
51, 2, 3, 4syl3anc 1249 1  |-  ( ph  ->  ( A  x.  ( B  -  C )
)  =  ( ( A  x.  B )  -  ( A  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164  (class class class)co 5919   CCcc 7872    x. cmul 7879    - cmin 8192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570  ax-resscn 7966  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sub 8194
This theorem is referenced by:  cru  8623  recextlem1  8672  cju  8982  zneo  9421  lincmb01cmp  10072  iccf1o  10073  intfracq  10394  modqlt  10407  modqdi  10466  modqsubdir  10467  subsq  10720  crre  11004  remullem  11018  mulcn2  11458  fsumparts  11616  geosergap  11652  mertensabs  11683  tanval3ap  11860  tanaddap  11885  eirraplem  11923  bezoutlemnewy  12136  cncongr1  12244  eulerthlemh  12372  prmdiv  12376  prmdiveq  12377  4sqlem10  12528  mul4sqlem  12534  4sqlem17  12548  dvmulxxbr  14881  tangtx  15014  lgseisenlem2  15228  lgsquadlem1  15234  2sqlem4  15275  qdencn  15587
  Copyright terms: Public domain W3C validator