| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subdid | Unicode version | ||
| Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mulm1d.1 |
|
| mulnegd.2 |
|
| subdid.3 |
|
| Ref | Expression |
|---|---|
| subdid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulm1d.1 |
. 2
| |
| 2 | mulnegd.2 |
. 2
| |
| 3 | subdid.3 |
. 2
| |
| 4 | subdi 8456 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 ax-resscn 8016 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-sub 8244 |
| This theorem is referenced by: muls1d 8489 cru 8674 recextlem1 8723 cju 9033 zneo 9473 lincmb01cmp 10124 iccf1o 10125 intfracq 10463 modqlt 10476 modqdi 10535 modqsubdir 10536 subsq 10789 crre 11139 remullem 11153 mulcn2 11594 fsumparts 11752 geosergap 11788 mertensabs 11819 tanval3ap 11996 tanaddap 12021 eirraplem 12059 bezoutlemnewy 12288 cncongr1 12396 eulerthlemh 12524 prmdiv 12528 prmdiveq 12529 4sqlem10 12681 mul4sqlem 12687 4sqlem17 12701 dvmulxxbr 15145 tangtx 15281 lgseisenlem2 15519 lgsquadlem1 15525 2sqlem4 15566 qdencn 15928 |
| Copyright terms: Public domain | W3C validator |