| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negcld | Unicode version | ||
| Description: Closure law for negative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 |
|
| Ref | Expression |
|---|---|
| negcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 |
. 2
| |
| 2 | negcl 8228 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7973 ax-1cn 7974 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-distr 7985 ax-i2m1 7986 ax-0id 7989 ax-rnegex 7990 ax-cnre 7992 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-sub 8201 df-neg 8202 |
| This theorem is referenced by: negcon1ad 8334 mulext1 8641 recextlem1 8680 div2subap 8866 prodgt0 8881 negiso 8984 peano2z 9364 zaddcllemneg 9367 infrenegsupex 9670 mul2lt0rlt0 9836 ceiqm1l 10405 expaddzaplem 10676 cjreb 11033 resqrexlemover 11177 minabs 11403 climshft 11471 climshft2 11473 fsumsub 11619 telfsumo2 11634 geosergap 11673 eftlub 11857 efi4p 11884 oexpneg 12044 bitscmp 12125 gcdaddm 12161 pcadd2 12520 gznegcl 12554 mulgdirlem 13293 mulgdir 13294 gsumfzconst 13481 znunit 14225 negcncf 14851 limcimolemlt 14910 dvrecap 14959 dvmptsubcn 14969 sinmpi 15061 cosmpi 15062 sinppi 15063 cosppi 15064 rpcxpneg 15153 apdifflemr 15701 |
| Copyright terms: Public domain | W3C validator |