ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcld Unicode version

Theorem negcld 8024
Description: Closure law for negative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
negcld  |-  ( ph  -> 
-u A  e.  CC )

Proof of Theorem negcld
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 negcl 7926 . 2  |-  ( A  e.  CC  ->  -u A  e.  CC )
31, 2syl 14 1  |-  ( ph  -> 
-u A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1463   CCcc 7582   -ucneg 7898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-setind 4420  ax-resscn 7676  ax-1cn 7677  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-sub 7899  df-neg 7900
This theorem is referenced by:  negcon1ad  8032  mulext1  8337  subap0d  8368  recextlem1  8372  div2subap  8556  prodgt0  8567  negiso  8670  peano2z  9041  zaddcllemneg  9044  infrenegsupex  9338  ceiqm1l  10024  expaddzaplem  10276  cjreb  10578  resqrexlemover  10722  minabs  10947  climshft  11013  climshft2  11015  fsumsub  11161  telfsumo2  11176  geosergap  11215  eftlub  11295  efi4p  11323  oexpneg  11470  gcdaddm  11568  negcncf  12652  limcimolemlt  12697  dvrecap  12741  dvmptsubcn  12749
  Copyright terms: Public domain W3C validator