ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcld Unicode version

Theorem negcld 8273
Description: Closure law for negative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
negcld  |-  ( ph  -> 
-u A  e.  CC )

Proof of Theorem negcld
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 negcl 8175 . 2  |-  ( A  e.  CC  ->  -u A  e.  CC )
31, 2syl 14 1  |-  ( ph  -> 
-u A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2160   CCcc 7827   -ucneg 8147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-setind 4551  ax-resscn 7921  ax-1cn 7922  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-distr 7933  ax-i2m1 7934  ax-0id 7937  ax-rnegex 7938  ax-cnre 7940
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-sub 8148  df-neg 8149
This theorem is referenced by:  negcon1ad  8281  mulext1  8587  recextlem1  8626  div2subap  8812  prodgt0  8827  negiso  8930  peano2z  9307  zaddcllemneg  9310  infrenegsupex  9612  mul2lt0rlt0  9777  ceiqm1l  10329  expaddzaplem  10581  cjreb  10893  resqrexlemover  11037  minabs  11262  climshft  11330  climshft2  11332  fsumsub  11478  telfsumo2  11493  geosergap  11532  eftlub  11716  efi4p  11743  oexpneg  11900  gcdaddm  12003  gznegcl  12391  mulgdirlem  13059  mulgdir  13060  negcncf  14485  limcimolemlt  14530  dvrecap  14574  dvmptsubcn  14582  sinmpi  14633  cosmpi  14634  sinppi  14635  cosppi  14636  rpcxpneg  14725  apdifflemr  15193
  Copyright terms: Public domain W3C validator