ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negcld Unicode version

Theorem negcld 8341
Description: Closure law for negative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
negcld  |-  ( ph  -> 
-u A  e.  CC )

Proof of Theorem negcld
StepHypRef Expression
1 negidd.1 . 2  |-  ( ph  ->  A  e.  CC )
2 negcl 8243 . 2  |-  ( A  e.  CC  ->  -u A  e.  CC )
31, 2syl 14 1  |-  ( ph  -> 
-u A  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   CCcc 7894   -ucneg 8215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216  df-neg 8217
This theorem is referenced by:  negcon1ad  8349  mulext1  8656  recextlem1  8695  div2subap  8881  prodgt0  8896  negiso  8999  peano2z  9379  zaddcllemneg  9382  infrenegsupex  9685  mul2lt0rlt0  9851  ceiqm1l  10420  expaddzaplem  10691  cjreb  11048  resqrexlemover  11192  minabs  11418  climshft  11486  climshft2  11488  fsumsub  11634  telfsumo2  11649  geosergap  11688  eftlub  11872  efi4p  11899  oexpneg  12059  bitscmp  12140  gcdaddm  12176  pcadd2  12535  gznegcl  12569  mulgdirlem  13359  mulgdir  13360  gsumfzconst  13547  znunit  14291  negcncf  14925  limcimolemlt  14984  dvrecap  15033  dvmptsubcn  15043  sinmpi  15135  cosmpi  15136  sinppi  15137  cosppi  15138  rpcxpneg  15227  apdifflemr  15778
  Copyright terms: Public domain W3C validator