ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem5 Unicode version

Theorem 2sqlem5 15206
Description: Lemma for 2sq . If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem5.1  |-  ( ph  ->  N  e.  NN )
2sqlem5.2  |-  ( ph  ->  P  e.  Prime )
2sqlem5.3  |-  ( ph  ->  ( N  x.  P
)  e.  S )
2sqlem5.4  |-  ( ph  ->  P  e.  S )
Assertion
Ref Expression
2sqlem5  |-  ( ph  ->  N  e.  S )

Proof of Theorem 2sqlem5
Dummy variables  p  q  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem5.4 . . 3  |-  ( ph  ->  P  e.  S )
2 2sq.1 . . . 4  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
322sqlem2 15202 . . 3  |-  ( P  e.  S  <->  E. p  e.  ZZ  E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) ) )
41, 3sylib 122 . 2  |-  ( ph  ->  E. p  e.  ZZ  E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) ) )
5 2sqlem5.3 . . 3  |-  ( ph  ->  ( N  x.  P
)  e.  S )
622sqlem2 15202 . . 3  |-  ( ( N  x.  P )  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
75, 6sylib 122 . 2  |-  ( ph  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
8 reeanv 2664 . . 3  |-  ( E. p  e.  ZZ  E. x  e.  ZZ  ( E. q  e.  ZZ  P  =  ( (
p ^ 2 )  +  ( q ^
2 ) )  /\  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( E. p  e.  ZZ  E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
9 reeanv 2664 . . . . 5  |-  ( E. q  e.  ZZ  E. y  e.  ZZ  ( P  =  ( (
p ^ 2 )  +  ( q ^
2 ) )  /\  ( N  x.  P
)  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <-> 
( E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
10 2sqlem5.1 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
1110ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  N  e.  NN )
12 2sqlem5.2 . . . . . . . . 9  |-  ( ph  ->  P  e.  Prime )
1312ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  P  e.  Prime )
14 simplrr 536 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  x  e.  ZZ )
15 simprlr 538 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  -> 
y  e.  ZZ )
16 simplrl 535 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  p  e.  ZZ )
17 simprll 537 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  -> 
q  e.  ZZ )
18 simprrr 540 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  -> 
( N  x.  P
)  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )
19 simprrl 539 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  P  =  ( (
p ^ 2 )  +  ( q ^
2 ) ) )
202, 11, 13, 14, 15, 16, 17, 18, 192sqlem4 15205 . . . . . . 7  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  N  e.  S )
2120expr 375 . . . . . 6  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( q  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( P  =  ( ( p ^
2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  ->  N  e.  S ) )
2221rexlimdvva 2619 . . . . 5  |-  ( (
ph  /\  ( p  e.  ZZ  /\  x  e.  ZZ ) )  -> 
( E. q  e.  ZZ  E. y  e.  ZZ  ( P  =  ( ( p ^
2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  ->  N  e.  S ) )
239, 22biimtrrid 153 . . . 4  |-  ( (
ph  /\  ( p  e.  ZZ  /\  x  e.  ZZ ) )  -> 
( ( E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  ->  N  e.  S ) )
2423rexlimdvva 2619 . . 3  |-  ( ph  ->  ( E. p  e.  ZZ  E. x  e.  ZZ  ( E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  ->  N  e.  S ) )
258, 24biimtrrid 153 . 2  |-  ( ph  ->  ( ( E. p  e.  ZZ  E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  ->  N  e.  S ) )
264, 7, 25mp2and 433 1  |-  ( ph  ->  N  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   E.wrex 2473    |-> cmpt 4090   ran crn 4660   ` cfv 5254  (class class class)co 5918    + caddc 7875    x. cmul 7877   NNcn 8982   2c2 9033   ZZcz 9317   ^cexp 10609   abscabs 11141   Primecprime 12245   ZZ[_i]cgz 12507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-sup 7043  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-prm 12246  df-gz 12508
This theorem is referenced by:  2sqlem6  15207
  Copyright terms: Public domain W3C validator