ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem5 Unicode version

Theorem 2sqlem5 14505
Description: Lemma for 2sq . If a number that is a sum of two squares is divisible by a prime that is a sum of two squares, then the quotient is a sum of two squares. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem5.1  |-  ( ph  ->  N  e.  NN )
2sqlem5.2  |-  ( ph  ->  P  e.  Prime )
2sqlem5.3  |-  ( ph  ->  ( N  x.  P
)  e.  S )
2sqlem5.4  |-  ( ph  ->  P  e.  S )
Assertion
Ref Expression
2sqlem5  |-  ( ph  ->  N  e.  S )

Proof of Theorem 2sqlem5
Dummy variables  p  q  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem5.4 . . 3  |-  ( ph  ->  P  e.  S )
2 2sq.1 . . . 4  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
322sqlem2 14501 . . 3  |-  ( P  e.  S  <->  E. p  e.  ZZ  E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) ) )
41, 3sylib 122 . 2  |-  ( ph  ->  E. p  e.  ZZ  E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) ) )
5 2sqlem5.3 . . 3  |-  ( ph  ->  ( N  x.  P
)  e.  S )
622sqlem2 14501 . . 3  |-  ( ( N  x.  P )  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
75, 6sylib 122 . 2  |-  ( ph  ->  E. x  e.  ZZ  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
8 reeanv 2647 . . 3  |-  ( E. p  e.  ZZ  E. x  e.  ZZ  ( E. q  e.  ZZ  P  =  ( (
p ^ 2 )  +  ( q ^
2 ) )  /\  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( E. p  e.  ZZ  E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
9 reeanv 2647 . . . . 5  |-  ( E. q  e.  ZZ  E. y  e.  ZZ  ( P  =  ( (
p ^ 2 )  +  ( q ^
2 ) )  /\  ( N  x.  P
)  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <-> 
( E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
10 2sqlem5.1 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
1110ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  N  e.  NN )
12 2sqlem5.2 . . . . . . . . 9  |-  ( ph  ->  P  e.  Prime )
1312ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  P  e.  Prime )
14 simplrr 536 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  x  e.  ZZ )
15 simprlr 538 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  -> 
y  e.  ZZ )
16 simplrl 535 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  p  e.  ZZ )
17 simprll 537 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  -> 
q  e.  ZZ )
18 simprrr 540 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  -> 
( N  x.  P
)  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )
19 simprrl 539 . . . . . . . 8  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  P  =  ( (
p ^ 2 )  +  ( q ^
2 ) ) )
202, 11, 13, 14, 15, 16, 17, 18, 192sqlem4 14504 . . . . . . 7  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( (
q  e.  ZZ  /\  y  e.  ZZ )  /\  ( P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )  ->  N  e.  S )
2120expr 375 . . . . . 6  |-  ( ( ( ph  /\  (
p  e.  ZZ  /\  x  e.  ZZ )
)  /\  ( q  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( P  =  ( ( p ^
2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  ->  N  e.  S ) )
2221rexlimdvva 2602 . . . . 5  |-  ( (
ph  /\  ( p  e.  ZZ  /\  x  e.  ZZ ) )  -> 
( E. q  e.  ZZ  E. y  e.  ZZ  ( P  =  ( ( p ^
2 )  +  ( q ^ 2 ) )  /\  ( N  x.  P )  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  ->  N  e.  S ) )
239, 22biimtrrid 153 . . . 4  |-  ( (
ph  /\  ( p  e.  ZZ  /\  x  e.  ZZ ) )  -> 
( ( E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  ->  N  e.  S ) )
2423rexlimdvva 2602 . . 3  |-  ( ph  ->  ( E. p  e.  ZZ  E. x  e.  ZZ  ( E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  ->  N  e.  S ) )
258, 24biimtrrid 153 . 2  |-  ( ph  ->  ( ( E. p  e.  ZZ  E. q  e.  ZZ  P  =  ( ( p ^ 2 )  +  ( q ^ 2 ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  ( N  x.  P )  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  ->  N  e.  S ) )
264, 7, 25mp2and 433 1  |-  ( ph  ->  N  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   E.wrex 2456    |-> cmpt 4066   ran crn 4629   ` cfv 5218  (class class class)co 5877    + caddc 7816    x. cmul 7818   NNcn 8921   2c2 8972   ZZcz 9255   ^cexp 10521   abscabs 11008   Primecprime 12109   ZZ[_i]cgz 12369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-1o 6419  df-2o 6420  df-er 6537  df-en 6743  df-sup 6985  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-gcd 11946  df-prm 12110  df-gz 12370
This theorem is referenced by:  2sqlem6  14506
  Copyright terms: Public domain W3C validator