ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subsubrng GIF version

Theorem subsubrng 13710
Description: A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
subsubrng.s 𝑆 = (𝑅s 𝐴)
Assertion
Ref Expression
subsubrng (𝐴 ∈ (SubRng‘𝑅) → (𝐵 ∈ (SubRng‘𝑆) ↔ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)))

Proof of Theorem subsubrng
StepHypRef Expression
1 subrngrcl 13699 . . . . 5 (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng)
21adantr 276 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝑅 ∈ Rng)
3 eqid 2193 . . . . . . . . 9 (Base‘𝑆) = (Base‘𝑆)
43subrngss 13696 . . . . . . . 8 (𝐵 ∈ (SubRng‘𝑆) → 𝐵 ⊆ (Base‘𝑆))
54adantl 277 . . . . . . 7 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐵 ⊆ (Base‘𝑆))
6 subsubrng.s . . . . . . . . 9 𝑆 = (𝑅s 𝐴)
76subrngbas 13702 . . . . . . . 8 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 = (Base‘𝑆))
87adantr 276 . . . . . . 7 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐴 = (Base‘𝑆))
95, 8sseqtrrd 3218 . . . . . 6 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐵𝐴)
106oveq1i 5928 . . . . . . 7 (𝑆s 𝐵) = ((𝑅s 𝐴) ↾s 𝐵)
11 ressabsg 12694 . . . . . . . . 9 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴𝑅 ∈ Rng) → ((𝑅s 𝐴) ↾s 𝐵) = (𝑅s 𝐵))
12113expa 1205 . . . . . . . 8 (((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴) ∧ 𝑅 ∈ Rng) → ((𝑅s 𝐴) ↾s 𝐵) = (𝑅s 𝐵))
131, 12mpidan 423 . . . . . . 7 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴) → ((𝑅s 𝐴) ↾s 𝐵) = (𝑅s 𝐵))
1410, 13eqtrid 2238 . . . . . 6 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴) → (𝑆s 𝐵) = (𝑅s 𝐵))
159, 14syldan 282 . . . . 5 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → (𝑆s 𝐵) = (𝑅s 𝐵))
16 eqid 2193 . . . . . . 7 (𝑆s 𝐵) = (𝑆s 𝐵)
1716subrngrng 13698 . . . . . 6 (𝐵 ∈ (SubRng‘𝑆) → (𝑆s 𝐵) ∈ Rng)
1817adantl 277 . . . . 5 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → (𝑆s 𝐵) ∈ Rng)
1915, 18eqeltrrd 2271 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → (𝑅s 𝐵) ∈ Rng)
20 eqid 2193 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
2120subrngss 13696 . . . . . 6 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
2221adantr 276 . . . . 5 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐴 ⊆ (Base‘𝑅))
239, 22sstrd 3189 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐵 ⊆ (Base‘𝑅))
2420issubrng 13695 . . . 4 (𝐵 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐵) ∈ Rng ∧ 𝐵 ⊆ (Base‘𝑅)))
252, 19, 23, 24syl3anbrc 1183 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → 𝐵 ∈ (SubRng‘𝑅))
2625, 9jca 306 . 2 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑆)) → (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴))
276subrngrng 13698 . . . 4 (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng)
2827adantr 276 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → 𝑆 ∈ Rng)
2914adantrl 478 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → (𝑆s 𝐵) = (𝑅s 𝐵))
30 eqid 2193 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
3130subrngrng 13698 . . . . 5 (𝐵 ∈ (SubRng‘𝑅) → (𝑅s 𝐵) ∈ Rng)
3231ad2antrl 490 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → (𝑅s 𝐵) ∈ Rng)
3329, 32eqeltrd 2270 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → (𝑆s 𝐵) ∈ Rng)
34 simprr 531 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → 𝐵𝐴)
357adantr 276 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → 𝐴 = (Base‘𝑆))
3634, 35sseqtrd 3217 . . 3 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → 𝐵 ⊆ (Base‘𝑆))
373issubrng 13695 . . 3 (𝐵 ∈ (SubRng‘𝑆) ↔ (𝑆 ∈ Rng ∧ (𝑆s 𝐵) ∈ Rng ∧ 𝐵 ⊆ (Base‘𝑆)))
3828, 33, 36, 37syl3anbrc 1183 . 2 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)) → 𝐵 ∈ (SubRng‘𝑆))
3926, 38impbida 596 1 (𝐴 ∈ (SubRng‘𝑅) → (𝐵 ∈ (SubRng‘𝑆) ↔ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wss 3153  cfv 5254  (class class class)co 5918  Basecbs 12618  s cress 12619  Rngcrng 13428  SubRngcsubrng 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-subg 13240  df-abl 13357  df-rng 13429  df-subrng 13694
This theorem is referenced by:  subsubrng2  13711
  Copyright terms: Public domain W3C validator