ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xleneg Unicode version

Theorem xleneg 9839
Description: Extended real version of leneg 8424. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xleneg  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -e B  <_  -e A ) )

Proof of Theorem xleneg
StepHypRef Expression
1 xltneg 9838 . . . 4  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B  <  A  <->  -e A  <  -e B ) )
21ancoms 268 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  <->  -e A  <  -e B ) )
32notbid 667 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( -.  B  <  A  <->  -.  -e
A  <  -e B ) )
4 xrlenlt 8024 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -.  B  <  A ) )
5 xnegcl 9834 . . 3  |-  ( B  e.  RR*  ->  -e
B  e.  RR* )
6 xnegcl 9834 . . 3  |-  ( A  e.  RR*  ->  -e
A  e.  RR* )
7 xrlenlt 8024 . . 3  |-  ( ( 
-e B  e. 
RR*  /\  -e A  e.  RR* )  ->  (  -e B  <_  -e
A  <->  -.  -e A  <  -e B ) )
85, 6, 7syl2anr 290 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (  -e B  <_  -e
A  <->  -.  -e A  <  -e B ) )
93, 4, 83bitr4d 220 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -e B  <_  -e A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2148   class class class wbr 4005   RR*cxr 7993    < clt 7994    <_ cle 7995    -ecxne 9771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-xneg 9774
This theorem is referenced by:  xle0neg1  9842  xle0neg2  9843  xrminmax  11275  xrmin1inf  11277  xrmin2inf  11278  xrmineqinf  11279  xrlemininf  11281
  Copyright terms: Public domain W3C validator