ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xleneg GIF version

Theorem xleneg 9794
Description: Extended real version of leneg 8384. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xleneg ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴))

Proof of Theorem xleneg
StepHypRef Expression
1 xltneg 9793 . . . 4 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐵))
21ancoms 266 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐵))
32notbid 662 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ ¬ -𝑒𝐴 < -𝑒𝐵))
4 xrlenlt 7984 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5 xnegcl 9789 . . 3 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
6 xnegcl 9789 . . 3 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
7 xrlenlt 7984 . . 3 ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ*) → (-𝑒𝐵 ≤ -𝑒𝐴 ↔ ¬ -𝑒𝐴 < -𝑒𝐵))
85, 6, 7syl2anr 288 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐵 ≤ -𝑒𝐴 ↔ ¬ -𝑒𝐴 < -𝑒𝐵))
93, 4, 83bitr4d 219 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 2141   class class class wbr 3989  *cxr 7953   < clt 7954  cle 7955  -𝑒cxne 9726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-xneg 9729
This theorem is referenced by:  xle0neg1  9797  xle0neg2  9798  xrminmax  11228  xrmin1inf  11230  xrmin2inf  11231  xrmineqinf  11232  xrlemininf  11234
  Copyright terms: Public domain W3C validator