ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xleneg GIF version

Theorem xleneg 9903
Description: Extended real version of leneg 8484. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xleneg ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴))

Proof of Theorem xleneg
StepHypRef Expression
1 xltneg 9902 . . . 4 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐵))
21ancoms 268 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐵))
32notbid 668 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ ¬ -𝑒𝐴 < -𝑒𝐵))
4 xrlenlt 8084 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5 xnegcl 9898 . . 3 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
6 xnegcl 9898 . . 3 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
7 xrlenlt 8084 . . 3 ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ*) → (-𝑒𝐵 ≤ -𝑒𝐴 ↔ ¬ -𝑒𝐴 < -𝑒𝐵))
85, 6, 7syl2anr 290 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐵 ≤ -𝑒𝐴 ↔ ¬ -𝑒𝐴 < -𝑒𝐵))
93, 4, 83bitr4d 220 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2164   class class class wbr 4029  *cxr 8053   < clt 8054  cle 8055  -𝑒cxne 9835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-xneg 9838
This theorem is referenced by:  xle0neg1  9906  xle0neg2  9907  xrminmax  11408  xrmin1inf  11410  xrmin2inf  11411  xrmineqinf  11412  xrlemininf  11414
  Copyright terms: Public domain W3C validator