![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xleneg | GIF version |
Description: Extended real version of leneg 8146. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xleneg | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xltneg 9512 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐵)) | |
2 | 1 | ancoms 266 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐵)) |
3 | 2 | notbid 639 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ ¬ -𝑒𝐴 < -𝑒𝐵)) |
4 | xrlenlt 7753 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
5 | xnegcl 9508 | . . 3 ⊢ (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*) | |
6 | xnegcl 9508 | . . 3 ⊢ (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*) | |
7 | xrlenlt 7753 | . . 3 ⊢ ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ*) → (-𝑒𝐵 ≤ -𝑒𝐴 ↔ ¬ -𝑒𝐴 < -𝑒𝐵)) | |
8 | 5, 6, 7 | syl2anr 286 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (-𝑒𝐵 ≤ -𝑒𝐴 ↔ ¬ -𝑒𝐴 < -𝑒𝐵)) |
9 | 3, 4, 8 | 3bitr4d 219 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 1463 class class class wbr 3895 ℝ*cxr 7723 < clt 7724 ≤ cle 7725 -𝑒cxne 9449 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-cnex 7636 ax-resscn 7637 ax-1cn 7638 ax-1re 7639 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-addcom 7645 ax-addass 7647 ax-distr 7649 ax-i2m1 7650 ax-0id 7653 ax-rnegex 7654 ax-cnre 7656 ax-pre-ltadd 7661 |
This theorem depends on definitions: df-bi 116 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-if 3441 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-iota 5046 df-fun 5083 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-pnf 7726 df-mnf 7727 df-xr 7728 df-ltxr 7729 df-le 7730 df-sub 7858 df-neg 7859 df-xneg 9452 |
This theorem is referenced by: xle0neg1 9516 xle0neg2 9517 xrminmax 10926 xrmin1inf 10928 xrmin2inf 10929 xrmineqinf 10930 xrlemininf 10932 |
Copyright terms: Public domain | W3C validator |