ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xleneg GIF version

Theorem xleneg 9513
Description: Extended real version of leneg 8146. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xleneg ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴))

Proof of Theorem xleneg
StepHypRef Expression
1 xltneg 9512 . . . 4 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐵))
21ancoms 266 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 < 𝐴 ↔ -𝑒𝐴 < -𝑒𝐵))
32notbid 639 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐵 < 𝐴 ↔ ¬ -𝑒𝐴 < -𝑒𝐵))
4 xrlenlt 7753 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
5 xnegcl 9508 . . 3 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
6 xnegcl 9508 . . 3 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
7 xrlenlt 7753 . . 3 ((-𝑒𝐵 ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ*) → (-𝑒𝐵 ≤ -𝑒𝐴 ↔ ¬ -𝑒𝐴 < -𝑒𝐵))
85, 6, 7syl2anr 286 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐵 ≤ -𝑒𝐴 ↔ ¬ -𝑒𝐴 < -𝑒𝐵))
93, 4, 83bitr4d 219 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ -𝑒𝐵 ≤ -𝑒𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 1463   class class class wbr 3895  *cxr 7723   < clt 7724  cle 7725  -𝑒cxne 9449
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-iota 5046  df-fun 5083  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-xneg 9452
This theorem is referenced by:  xle0neg1  9516  xle0neg2  9517  xrminmax  10926  xrmin1inf  10928  xrmin2inf  10929  xrmineqinf  10930  xrlemininf  10932
  Copyright terms: Public domain W3C validator