ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcllemneg Unicode version

Theorem zaddcllemneg 9093
Description: Lemma for zaddcl 9094. Special case in which  -u N is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zaddcllemneg  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ )

Proof of Theorem zaddcllemneg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 982 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  N  e.  RR )
21recnd 7794 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  N  e.  CC )
32negnegd 8064 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  -u -u N  =  N )
43oveq2d 5790 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  -u -u N
)  =  ( M  +  N ) )
5 negeq 7955 . . . . . . . 8  |-  ( x  =  1  ->  -u x  =  -u 1 )
65oveq2d 5790 . . . . . . 7  |-  ( x  =  1  ->  ( M  +  -u x )  =  ( M  +  -u 1 ) )
76eleq1d 2208 . . . . . 6  |-  ( x  =  1  ->  (
( M  +  -u x )  e.  ZZ  <->  ( M  +  -u 1
)  e.  ZZ ) )
87imbi2d 229 . . . . 5  |-  ( x  =  1  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u x )  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u 1 )  e.  ZZ ) ) )
9 negeq 7955 . . . . . . . 8  |-  ( x  =  y  ->  -u x  =  -u y )
109oveq2d 5790 . . . . . . 7  |-  ( x  =  y  ->  ( M  +  -u x )  =  ( M  +  -u y ) )
1110eleq1d 2208 . . . . . 6  |-  ( x  =  y  ->  (
( M  +  -u x )  e.  ZZ  <->  ( M  +  -u y
)  e.  ZZ ) )
1211imbi2d 229 . . . . 5  |-  ( x  =  y  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u x )  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u y )  e.  ZZ ) ) )
13 negeq 7955 . . . . . . . 8  |-  ( x  =  ( y  +  1 )  ->  -u x  =  -u ( y  +  1 ) )
1413oveq2d 5790 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  ( M  +  -u x )  =  ( M  +  -u ( y  +  1 ) ) )
1514eleq1d 2208 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( M  +  -u x )  e.  ZZ  <->  ( M  +  -u (
y  +  1 ) )  e.  ZZ ) )
1615imbi2d 229 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u x )  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u ( y  +  1 ) )  e.  ZZ ) ) )
17 negeq 7955 . . . . . . . 8  |-  ( x  =  -u N  ->  -u x  =  -u -u N )
1817oveq2d 5790 . . . . . . 7  |-  ( x  =  -u N  ->  ( M  +  -u x )  =  ( M  +  -u -u N ) )
1918eleq1d 2208 . . . . . 6  |-  ( x  =  -u N  ->  (
( M  +  -u x )  e.  ZZ  <->  ( M  +  -u -u N
)  e.  ZZ ) )
2019imbi2d 229 . . . . 5  |-  ( x  =  -u N  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u x )  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u -u N
)  e.  ZZ ) ) )
21 zcn 9059 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  CC )
2221adantr 274 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  M  e.  CC )
23 1cnd 7782 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  1  e.  CC )
2422, 23negsubd 8079 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u
1 )  =  ( M  -  1 ) )
25 peano2zm 9092 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
2625adantr 274 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  -  1 )  e.  ZZ )
2724, 26eqeltrd 2216 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u
1 )  e.  ZZ )
28 nncn 8728 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  CC )
2928ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  y  e.  CC )
30 1cnd 7782 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  1  e.  CC )
3129, 30negdi2d 8087 . . . . . . . . 9  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  -u (
y  +  1 )  =  ( -u y  -  1 ) )
3231oveq2d 5790 . . . . . . . 8  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  ( M  +  -u ( y  +  1 ) )  =  ( M  +  ( -u y  -  1 ) ) )
3322ad2antlr 480 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  M  e.  CC )
3429negcld 8060 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  -u y  e.  CC )
3533, 34, 30addsubassd 8093 . . . . . . . . 9  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  (
( M  +  -u y )  -  1 )  =  ( M  +  ( -u y  -  1 ) ) )
36 peano2zm 9092 . . . . . . . . . 10  |-  ( ( M  +  -u y
)  e.  ZZ  ->  ( ( M  +  -u y )  -  1 )  e.  ZZ )
3736adantl 275 . . . . . . . . 9  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  (
( M  +  -u y )  -  1 )  e.  ZZ )
3835, 37eqeltrrd 2217 . . . . . . . 8  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  ( M  +  ( -u y  -  1 ) )  e.  ZZ )
3932, 38eqeltrd 2216 . . . . . . 7  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  ( M  +  -u ( y  +  1 ) )  e.  ZZ )
4039exp31 361 . . . . . 6  |-  ( y  e.  NN  ->  (
( M  e.  ZZ  /\  N  e.  RR )  ->  ( ( M  +  -u y )  e.  ZZ  ->  ( M  +  -u ( y  +  1 ) )  e.  ZZ ) ) )
4140a2d 26 . . . . 5  |-  ( y  e.  NN  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u y )  e.  ZZ )  -> 
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u ( y  +  1 ) )  e.  ZZ ) ) )
428, 12, 16, 20, 27, 41nnind 8736 . . . 4  |-  ( -u N  e.  NN  ->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u -u N )  e.  ZZ ) )
4342impcom 124 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  RR )  /\  -u N  e.  NN )  ->  ( M  +  -u -u N )  e.  ZZ )
44433impa 1176 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  -u -u N
)  e.  ZZ )
454, 44eqeltrrd 2217 1  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480  (class class class)co 5774   CCcc 7618   RRcr 7619   1c1 7621    + caddc 7623    - cmin 7933   -ucneg 7934   NNcn 8720   ZZcz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055
This theorem is referenced by:  zaddcl  9094
  Copyright terms: Public domain W3C validator