ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcllemneg Unicode version

Theorem zaddcllemneg 9251
Description: Lemma for zaddcl 9252. Special case in which  -u N is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zaddcllemneg  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ )

Proof of Theorem zaddcllemneg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 993 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  N  e.  RR )
21recnd 7948 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  N  e.  CC )
32negnegd 8221 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  -u -u N  =  N )
43oveq2d 5869 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  -u -u N
)  =  ( M  +  N ) )
5 negeq 8112 . . . . . . . 8  |-  ( x  =  1  ->  -u x  =  -u 1 )
65oveq2d 5869 . . . . . . 7  |-  ( x  =  1  ->  ( M  +  -u x )  =  ( M  +  -u 1 ) )
76eleq1d 2239 . . . . . 6  |-  ( x  =  1  ->  (
( M  +  -u x )  e.  ZZ  <->  ( M  +  -u 1
)  e.  ZZ ) )
87imbi2d 229 . . . . 5  |-  ( x  =  1  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u x )  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u 1 )  e.  ZZ ) ) )
9 negeq 8112 . . . . . . . 8  |-  ( x  =  y  ->  -u x  =  -u y )
109oveq2d 5869 . . . . . . 7  |-  ( x  =  y  ->  ( M  +  -u x )  =  ( M  +  -u y ) )
1110eleq1d 2239 . . . . . 6  |-  ( x  =  y  ->  (
( M  +  -u x )  e.  ZZ  <->  ( M  +  -u y
)  e.  ZZ ) )
1211imbi2d 229 . . . . 5  |-  ( x  =  y  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u x )  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u y )  e.  ZZ ) ) )
13 negeq 8112 . . . . . . . 8  |-  ( x  =  ( y  +  1 )  ->  -u x  =  -u ( y  +  1 ) )
1413oveq2d 5869 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  ( M  +  -u x )  =  ( M  +  -u ( y  +  1 ) ) )
1514eleq1d 2239 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( M  +  -u x )  e.  ZZ  <->  ( M  +  -u (
y  +  1 ) )  e.  ZZ ) )
1615imbi2d 229 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u x )  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u ( y  +  1 ) )  e.  ZZ ) ) )
17 negeq 8112 . . . . . . . 8  |-  ( x  =  -u N  ->  -u x  =  -u -u N )
1817oveq2d 5869 . . . . . . 7  |-  ( x  =  -u N  ->  ( M  +  -u x )  =  ( M  +  -u -u N ) )
1918eleq1d 2239 . . . . . 6  |-  ( x  =  -u N  ->  (
( M  +  -u x )  e.  ZZ  <->  ( M  +  -u -u N
)  e.  ZZ ) )
2019imbi2d 229 . . . . 5  |-  ( x  =  -u N  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u x )  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u -u N
)  e.  ZZ ) ) )
21 zcn 9217 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  CC )
2221adantr 274 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  M  e.  CC )
23 1cnd 7936 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  1  e.  CC )
2422, 23negsubd 8236 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u
1 )  =  ( M  -  1 ) )
25 peano2zm 9250 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
2625adantr 274 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  -  1 )  e.  ZZ )
2724, 26eqeltrd 2247 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u
1 )  e.  ZZ )
28 nncn 8886 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  CC )
2928ad2antrr 485 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  y  e.  CC )
30 1cnd 7936 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  1  e.  CC )
3129, 30negdi2d 8244 . . . . . . . . 9  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  -u (
y  +  1 )  =  ( -u y  -  1 ) )
3231oveq2d 5869 . . . . . . . 8  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  ( M  +  -u ( y  +  1 ) )  =  ( M  +  ( -u y  -  1 ) ) )
3322ad2antlr 486 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  M  e.  CC )
3429negcld 8217 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  -u y  e.  CC )
3533, 34, 30addsubassd 8250 . . . . . . . . 9  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  (
( M  +  -u y )  -  1 )  =  ( M  +  ( -u y  -  1 ) ) )
36 peano2zm 9250 . . . . . . . . . 10  |-  ( ( M  +  -u y
)  e.  ZZ  ->  ( ( M  +  -u y )  -  1 )  e.  ZZ )
3736adantl 275 . . . . . . . . 9  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  (
( M  +  -u y )  -  1 )  e.  ZZ )
3835, 37eqeltrrd 2248 . . . . . . . 8  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  ( M  +  ( -u y  -  1 ) )  e.  ZZ )
3932, 38eqeltrd 2247 . . . . . . 7  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  ( M  +  -u ( y  +  1 ) )  e.  ZZ )
4039exp31 362 . . . . . 6  |-  ( y  e.  NN  ->  (
( M  e.  ZZ  /\  N  e.  RR )  ->  ( ( M  +  -u y )  e.  ZZ  ->  ( M  +  -u ( y  +  1 ) )  e.  ZZ ) ) )
4140a2d 26 . . . . 5  |-  ( y  e.  NN  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u y )  e.  ZZ )  -> 
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u ( y  +  1 ) )  e.  ZZ ) ) )
428, 12, 16, 20, 27, 41nnind 8894 . . . 4  |-  ( -u N  e.  NN  ->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u -u N )  e.  ZZ ) )
4342impcom 124 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  RR )  /\  -u N  e.  NN )  ->  ( M  +  -u -u N )  e.  ZZ )
44433impa 1189 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  -u -u N
)  e.  ZZ )
454, 44eqeltrrd 2248 1  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141  (class class class)co 5853   CCcc 7772   RRcr 7773   1c1 7775    + caddc 7777    - cmin 8090   -ucneg 8091   NNcn 8878   ZZcz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213
This theorem is referenced by:  zaddcl  9252
  Copyright terms: Public domain W3C validator