ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcllemneg Unicode version

Theorem zaddcllemneg 9485
Description: Lemma for zaddcl 9486. Special case in which  -u N is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zaddcllemneg  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ )

Proof of Theorem zaddcllemneg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1022 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  N  e.  RR )
21recnd 8175 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  N  e.  CC )
32negnegd 8448 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  -u -u N  =  N )
43oveq2d 6017 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  -u -u N
)  =  ( M  +  N ) )
5 negeq 8339 . . . . . . . 8  |-  ( x  =  1  ->  -u x  =  -u 1 )
65oveq2d 6017 . . . . . . 7  |-  ( x  =  1  ->  ( M  +  -u x )  =  ( M  +  -u 1 ) )
76eleq1d 2298 . . . . . 6  |-  ( x  =  1  ->  (
( M  +  -u x )  e.  ZZ  <->  ( M  +  -u 1
)  e.  ZZ ) )
87imbi2d 230 . . . . 5  |-  ( x  =  1  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u x )  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u 1 )  e.  ZZ ) ) )
9 negeq 8339 . . . . . . . 8  |-  ( x  =  y  ->  -u x  =  -u y )
109oveq2d 6017 . . . . . . 7  |-  ( x  =  y  ->  ( M  +  -u x )  =  ( M  +  -u y ) )
1110eleq1d 2298 . . . . . 6  |-  ( x  =  y  ->  (
( M  +  -u x )  e.  ZZ  <->  ( M  +  -u y
)  e.  ZZ ) )
1211imbi2d 230 . . . . 5  |-  ( x  =  y  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u x )  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u y )  e.  ZZ ) ) )
13 negeq 8339 . . . . . . . 8  |-  ( x  =  ( y  +  1 )  ->  -u x  =  -u ( y  +  1 ) )
1413oveq2d 6017 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  ( M  +  -u x )  =  ( M  +  -u ( y  +  1 ) ) )
1514eleq1d 2298 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( M  +  -u x )  e.  ZZ  <->  ( M  +  -u (
y  +  1 ) )  e.  ZZ ) )
1615imbi2d 230 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u x )  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u ( y  +  1 ) )  e.  ZZ ) ) )
17 negeq 8339 . . . . . . . 8  |-  ( x  =  -u N  ->  -u x  =  -u -u N )
1817oveq2d 6017 . . . . . . 7  |-  ( x  =  -u N  ->  ( M  +  -u x )  =  ( M  +  -u -u N ) )
1918eleq1d 2298 . . . . . 6  |-  ( x  =  -u N  ->  (
( M  +  -u x )  e.  ZZ  <->  ( M  +  -u -u N
)  e.  ZZ ) )
2019imbi2d 230 . . . . 5  |-  ( x  =  -u N  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u x )  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u -u N
)  e.  ZZ ) ) )
21 zcn 9451 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  CC )
2221adantr 276 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  M  e.  CC )
23 1cnd 8162 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  1  e.  CC )
2422, 23negsubd 8463 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u
1 )  =  ( M  -  1 ) )
25 peano2zm 9484 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
2625adantr 276 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  -  1 )  e.  ZZ )
2724, 26eqeltrd 2306 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u
1 )  e.  ZZ )
28 nncn 9118 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  CC )
2928ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  y  e.  CC )
30 1cnd 8162 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  1  e.  CC )
3129, 30negdi2d 8471 . . . . . . . . 9  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  -u (
y  +  1 )  =  ( -u y  -  1 ) )
3231oveq2d 6017 . . . . . . . 8  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  ( M  +  -u ( y  +  1 ) )  =  ( M  +  ( -u y  -  1 ) ) )
3322ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  M  e.  CC )
3429negcld 8444 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  -u y  e.  CC )
3533, 34, 30addsubassd 8477 . . . . . . . . 9  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  (
( M  +  -u y )  -  1 )  =  ( M  +  ( -u y  -  1 ) ) )
36 peano2zm 9484 . . . . . . . . . 10  |-  ( ( M  +  -u y
)  e.  ZZ  ->  ( ( M  +  -u y )  -  1 )  e.  ZZ )
3736adantl 277 . . . . . . . . 9  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  (
( M  +  -u y )  -  1 )  e.  ZZ )
3835, 37eqeltrrd 2307 . . . . . . . 8  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  ( M  +  ( -u y  -  1 ) )  e.  ZZ )
3932, 38eqeltrd 2306 . . . . . . 7  |-  ( ( ( y  e.  NN  /\  ( M  e.  ZZ  /\  N  e.  RR ) )  /\  ( M  +  -u y )  e.  ZZ )  ->  ( M  +  -u ( y  +  1 ) )  e.  ZZ )
4039exp31 364 . . . . . 6  |-  ( y  e.  NN  ->  (
( M  e.  ZZ  /\  N  e.  RR )  ->  ( ( M  +  -u y )  e.  ZZ  ->  ( M  +  -u ( y  +  1 ) )  e.  ZZ ) ) )
4140a2d 26 . . . . 5  |-  ( y  e.  NN  ->  (
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u y )  e.  ZZ )  -> 
( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u ( y  +  1 ) )  e.  ZZ ) ) )
428, 12, 16, 20, 27, 41nnind 9126 . . . 4  |-  ( -u N  e.  NN  ->  ( ( M  e.  ZZ  /\  N  e.  RR )  ->  ( M  +  -u -u N )  e.  ZZ ) )
4342impcom 125 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  RR )  /\  -u N  e.  NN )  ->  ( M  +  -u -u N )  e.  ZZ )
44433impa 1218 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  -u -u N
)  e.  ZZ )
454, 44eqeltrrd 2307 1  |-  ( ( M  e.  ZZ  /\  N  e.  RR  /\  -u N  e.  NN )  ->  ( M  +  N )  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200  (class class class)co 6001   CCcc 7997   RRcr 7998   1c1 8000    + caddc 8002    - cmin 8317   -ucneg 8318   NNcn 9110   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447
This theorem is referenced by:  zaddcl  9486
  Copyright terms: Public domain W3C validator