Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zaddcllemneg | Unicode version |
Description: Lemma for zaddcl 9239. Special case in which is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.) |
Ref | Expression |
---|---|
zaddcllemneg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 993 | . . . . 5 | |
2 | 1 | recnd 7935 | . . . 4 |
3 | 2 | negnegd 8208 | . . 3 |
4 | 3 | oveq2d 5866 | . 2 |
5 | negeq 8099 | . . . . . . . 8 | |
6 | 5 | oveq2d 5866 | . . . . . . 7 |
7 | 6 | eleq1d 2239 | . . . . . 6 |
8 | 7 | imbi2d 229 | . . . . 5 |
9 | negeq 8099 | . . . . . . . 8 | |
10 | 9 | oveq2d 5866 | . . . . . . 7 |
11 | 10 | eleq1d 2239 | . . . . . 6 |
12 | 11 | imbi2d 229 | . . . . 5 |
13 | negeq 8099 | . . . . . . . 8 | |
14 | 13 | oveq2d 5866 | . . . . . . 7 |
15 | 14 | eleq1d 2239 | . . . . . 6 |
16 | 15 | imbi2d 229 | . . . . 5 |
17 | negeq 8099 | . . . . . . . 8 | |
18 | 17 | oveq2d 5866 | . . . . . . 7 |
19 | 18 | eleq1d 2239 | . . . . . 6 |
20 | 19 | imbi2d 229 | . . . . 5 |
21 | zcn 9204 | . . . . . . . 8 | |
22 | 21 | adantr 274 | . . . . . . 7 |
23 | 1cnd 7923 | . . . . . . 7 | |
24 | 22, 23 | negsubd 8223 | . . . . . 6 |
25 | peano2zm 9237 | . . . . . . 7 | |
26 | 25 | adantr 274 | . . . . . 6 |
27 | 24, 26 | eqeltrd 2247 | . . . . 5 |
28 | nncn 8873 | . . . . . . . . . . 11 | |
29 | 28 | ad2antrr 485 | . . . . . . . . . 10 |
30 | 1cnd 7923 | . . . . . . . . . 10 | |
31 | 29, 30 | negdi2d 8231 | . . . . . . . . 9 |
32 | 31 | oveq2d 5866 | . . . . . . . 8 |
33 | 22 | ad2antlr 486 | . . . . . . . . . 10 |
34 | 29 | negcld 8204 | . . . . . . . . . 10 |
35 | 33, 34, 30 | addsubassd 8237 | . . . . . . . . 9 |
36 | peano2zm 9237 | . . . . . . . . . 10 | |
37 | 36 | adantl 275 | . . . . . . . . 9 |
38 | 35, 37 | eqeltrrd 2248 | . . . . . . . 8 |
39 | 32, 38 | eqeltrd 2247 | . . . . . . 7 |
40 | 39 | exp31 362 | . . . . . 6 |
41 | 40 | a2d 26 | . . . . 5 |
42 | 8, 12, 16, 20, 27, 41 | nnind 8881 | . . . 4 |
43 | 42 | impcom 124 | . . 3 |
44 | 43 | 3impa 1189 | . 2 |
45 | 4, 44 | eqeltrrd 2248 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 (class class class)co 5850 cc 7759 cr 7760 c1 7762 caddc 7764 cmin 8077 cneg 8078 cn 8865 cz 9199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-inn 8866 df-n0 9123 df-z 9200 |
This theorem is referenced by: zaddcl 9239 |
Copyright terms: Public domain | W3C validator |